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a b s t r a c t

A circular Pascal array is a periodization of the familiar Pascal’s triangle. Using simple
operators defined on periodic sequences, we find a direct relationship between the ranges
of the circular Pascal arrays and numbers of certain lattice paths within corridors, which
are related to Dyck paths. This link provides new, short proofs of some nontrivial formulas
found in the lattice-path literature.

Published by Elsevier B.V.

1. Circular Pascal arrays and corridor paths

1.1. Circular Pascal arrays

Webegin by defining the circular Pascal arrays (one for each integer d ≥ 2) and explore some of their amazing properties.
By the Pascal array, wemean something a littlemore general than the familiar Pascal’s triangle. Inwhat follows, we interpret
the binomial coefficient

 n
k


as the coefficient of xk in the expansion,

(1 + x)n =


k∈Z

n
k


xk,

where we understand
 n
k


= 0 if k < 0 or k > n. We also use the convention that N denotes the set of non-negative integers,

{0, 1, 2, 3, . . .}.

Definition 1. The Pascal array is the array whose row n, column k entry is equal to
 n
k


where n ∈ N, k ∈ Z.

n \ k · · · −1 0 1 2 3 4 5 · · ·

0 · · · 0 1 0 0 0 0 0 · · ·

1 · · · 0 1 1 0 0 0 0 · · ·

2 · · · 0 1 2 1 0 0 0 · · ·

3 · · · 0 1 3 3 1 0 0 · · ·

4 · · · 0 1 4 6 4 1 0 · · ·

5 · · · 0 1 5 10 10 5 1 · · ·

...
...

...
...

...
...

...
...

∗ Corresponding author.
E-mail addresses: svault@valdosta.edu (S.V. Ault), ckicey@valdosta.edu (C. Kicey).

http://dx.doi.org/10.1016/j.disc.2014.05.020
0012-365X/Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.disc.2014.05.020
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2014.05.020&domain=pdf
mailto:svault@valdosta.edu
mailto:ckicey@valdosta.edu
http://dx.doi.org/10.1016/j.disc.2014.05.020


46 S.V. Ault, C. Kicey / Discrete Mathematics 332 (2014) 45–54

Recall that for any n > 0, entry (n, k) of the array can be found by the familiar formula,n
k


=


n − 1
k − 1


+


n − 1

k


. (1)

Definition 2. Fix an integer d ≥ 2. The circular Pascal array of order d is the array whose row n, column k entry, σ (d)
n,k (or just

σn,k when the context is clear), is the (finite) sum:

σn,k = σ
(d)
n,k =


j∈Z


n

k + dj


, (2)

where n ∈ N and k ∈ Z.

In what follows, we will be interested in periodic sequences and arrays of numbers. To be precise, we say a sequence
(ak)k∈Z is periodic, of period d, if ak+dm = ak for every m ∈ Z. Clearly, for fixed n ≥ 0, the sequence (σ

(d)
n,k )k∈Z as defined in

(2) is periodic of period d. Furthermore, it is easy to see that the entries of the circular Pascal array satisfy (1), in the sense
that for n > 0,

σn,k = σn−1,k−1 + σn−1,k. (3)

For d = 5, our collection of periodic sequences is indicated below.

n \ k · · · −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 · · ·

0 · · · 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 · · ·

1 · · · 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 · · ·

2 · · · 1 2 1 0 0 1 2 1 0 0 1 2 1 0 0 · · ·

3 · · · 1 3 3 1 0 1 3 3 1 0 1 3 3 1 0 · · ·

4 · · · 1 4 6 4 1 1 4 6 4 1 1 4 6 4 1 · · ·

5 · · · 2 5 10 10 5 2 5 10 10 5 2 5 10 10 5 · · ·

6 · · · 7 7 15 20 15 7 7 15 20 15 7 7 15 20 15 · · ·

7 · · · 22 14 22 35 35 22 14 22 35 35 22 14 22 35 35 · · ·

8 · · · 57 36 36 57 70 57 36 36 57 70 57 36 36 57 70 · · ·

9 · · · 127 93 72 93 127 127 93 72 93 127 127 93 72 93 127 · · ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Henceforth, we will represent a circular Pascal array by showing only columns 0, 1, . . . , d − 1.
While studying a related problem called the Sharing Problem, Charles Kicey, Katheryn Klimko, and Glen Whitehead [2]

noticed that the circular Pascal array has surprising connections to well-known sequences for small values of d. Consider
the case d = 2 (shown below, along with d = 3 and d = 4). Starting in row n = 1, σn,k = 2n−1 for k = 0, 1. Of course, this

reflects a well-known property of Pascal’s triangle:


j∈Z


n
2j


=


j∈Z


n

2j+1


, if n ≥ 1. Another way to state this result

is to say that the range (difference between maximum and minimum values) of the nth row is 0 for n ≥ 1 in the circular
Pascal array of order 2. The cases d = 3, 4 are interesting as well – for d = 3, the ranges are constantly 1, while for d = 4,
the range of row n is 2⌊n/2⌋ – but the most surprising case is, perhaps, d = 5. These ranges form the Fibonacci sequence,
as was proved in [2]. Now Fibonacci numbers are no strangers to Pascal’s triangle; indeed the sequence of diagonal sums,
fn =


j∈Z


n−j
j


, is easily shown to be the Fibonacci sequence. However, this new manifestation of the Fibonacci numbers

in the circular Pascal array of order 5 was quite unexpected.

d = 2
n \ k 0 1 Range
0 1 0 1
1 1 1 0
2 2 2 0
3 4 4 0
4 8 8 0
5 16 16 0
6 32 32 0
...

...
...

...

d = 3
n \ k 0 1 2 Range
0 1 0 0 1
1 1 1 0 1
2 1 2 1 1
3 2 3 3 1
4 5 5 6 1
5 11 10 11 1
6 22 21 21 1
...

...
...

...
...

d = 4
n \ k 0 1 2 3 Range
0 1 0 0 0 1
1 1 1 0 0 1
2 1 2 1 0 2
3 1 3 3 1 2
4 2 4 6 4 4
5 6 6 10 10 4
6 16 12 16 20 8
...

...
...

...
...

...
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