Rooted cyclic permutations of lattice paths and uniform partitions

Jun Ma ${ }^{\text {a,* }}$, Hao Shen ${ }^{\text {a }}$, Yeong-Nan Yeh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China
${ }^{\mathrm{b}}$ Institute of Mathematics, Academia Sinica, Taipei, Taiwan

ARTICLE INFO

Article history:

Received 17 March 2014
Received in revised form 16 December 2014
Accepted 31 January 2015
Available online 28 February 2015

Keywords:

Cyclic permutation
Fluctuation theory
Lattice path
Uniform partition

Abstract

A partition of a given set is said to be uniform if all the partition classes have the same cardinality. In this paper, we will introduce the concepts of rooted n-lattice path and rooted cyclic permutation and prove some fundamental theorems concerning the actions of rooted cyclic permutations on rooted lattice n-paths. The main results obtained have important applications in finding new uniform partitions. Many uniform partitions of combinatorial structures are special cases or consequences of our main theorems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathbb{N} be the set of natural numbers and \mathbb{R} the set of real numbers. An n-lattice path is a sequence L of two-dimensional vectors

$$
L=\left(x_{i}, y_{i}\right)_{i=1}^{n}=\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \cdots\left(x_{n}, y_{n}\right)
$$

where $\left(x_{i}, y_{i}\right) \in \mathbb{N} \times \mathbb{R}$ for every i. We call the vector $\left(x_{i}, y_{i}\right)$ a step of the path L.
Let $a_{0}=0, s_{0}=0$, and

$$
a_{i}=\sum_{j=1}^{i} x_{j}, \quad s_{i}=\sum_{j=1}^{i} y_{j}, \quad 1 \leq i \leq n,
$$

then L corresponds to the following sequence of points

$$
\left(a_{0}, s_{0}\right)\left(a_{1}, s_{1}\right) \cdots\left(a_{n}, s_{n}\right)
$$

We call $\left(a_{n}, s_{n}\right)$ the end point of L. Let $P(L)$ be the set of indices of points above x-axis in the path L, i.e., $P(L)=\left\{i \mid s_{i}>0\right\}$, and $p(L)=|P(L)|$. Moreover, we use $m(L)$ to denote the index of the leftmost point whose y-coordinate is maximal in the path L, i.e.,

$$
m(L)=\min \left\{i \mid s_{i} \geq s_{j} \text { for any } j \in\{0,1, \ldots, n\}\right\}
$$

Example 1.1. Let $L=(2,-1)(1,2)(1,-1)(1,1)(1,1)(1,-1)(2,1)(2,-1)$. We draw the lattice path which starts at the origin $(0,0)$ as given in Fig. 1.

[^0]

Fig. 1. The lattice path L.

Then

$$
P(L)=\{2,4,5,6,7,8\}, p(L)=6 \text { and } m(L)=5
$$

Given an $i \in\{1,2, \ldots, n\}$, the i th cyclic permutation L_{i} of L is the following sequence

$$
L_{i}=\left(x_{i}, y_{i}\right) \cdots\left(x_{n}, y_{n}\right)\left(x_{1}, y_{1}\right) \cdots\left(x_{i-1}, y_{i-1}\right)
$$

Let

$$
\begin{aligned}
& \mathcal{P}(L)=\left\{p\left(L_{i}\right) \mid i \in\{1,2, \ldots, n\}\right\}, \\
& \mathcal{M}(L)=\left\{m\left(L_{i}\right) \mid i \in\{1,2, \ldots, n\}\right\} .
\end{aligned}
$$

Obviously, if $s_{n}>0$ then

$$
\begin{aligned}
& \mathcal{P}(L) \subseteq\{1,2, \ldots, n\}, \\
& \mathcal{M}(L) \subseteq\{1,2, \ldots, n\} .
\end{aligned}
$$

For every $k \in\{1,2, \ldots, n\}$, if

$$
\mathcal{P}(L)=\{1,2, \ldots, n\}
$$

then there is exactly one cyclic permutation L_{i} of L such that $p\left(L_{i}\right)=k$, and if

$$
\mathcal{M}(L)=\{1,2, \ldots, n\}
$$

then there is exactly one cyclic permutation L_{j} of L such that $p\left(L_{j}\right)=k$. Thus, for $s_{n}>0$, an interesting problem is:
Problem 1.2. Determine necessary and sufficient conditions for

$$
\begin{aligned}
& \mathcal{P}(L)=\{1,2, \ldots, n\}, \\
& \mathcal{M}(L)=\{1,2, \ldots, n\},
\end{aligned}
$$

or

$$
\mathcal{P}(L)=\mathcal{M}(L)=\{1,2, \ldots, n\} .
$$

For $s_{n} \leq 0$, we have

$$
\begin{aligned}
& \mathcal{P}(L) \subseteq\{0,1, \ldots, n-1\} \\
& \mathcal{M}(L) \subseteq\{0,1, \ldots, n-1\} .
\end{aligned}
$$

Similarly, we are also interested in the following problem:
Problem 1.3. Determine necessary and sufficient conditions for

$$
\begin{aligned}
& \mathcal{P}(L)=\{0,1, \ldots, n-1\}, \\
& \mathcal{M}(L)=\{0,1, \ldots, n-1\},
\end{aligned}
$$

or

$$
\mathcal{P}(L)=\mathcal{M}(L)=\{0,1, \ldots, n-1\} .
$$

These problems have been studied by several authors and partial results obtained. In the case of $s_{n}=0$, Spitzer [24] gave sufficient conditions for $\mathcal{P}(L)=\mathcal{M}(L)=\{0,1, \ldots, n-1\}$. Let $L=\left(x_{i}, y_{i}\right)_{i=1}^{n}$ be an n-lattice path with $s_{n}=1$, where y_{i} is integer for any $i \in\{1,2, \ldots, n\}$. Raney [23] discovered a fact: there exists a unique cyclic permutation L_{i} of L such that $p\left(L_{i}\right)=n$. Narayana [21] gave sufficient conditions for $\mathcal{P}(L)=\{1,2, \ldots, n\}$. Graham and Knuth's book [12] introduced a simple geometric argument of the results obtained by Raney. This geometric argument gave sufficient conditions for $\mathcal{P}(L)=\mathcal{M}(L)=\{1,2, \ldots, n\}$. Recently, Huang, Ma and Yeh [14] solved Problems 1.2 and 1.3 completely.

https://daneshyari.com/en/article/4646903

Download Persian Version:

https://daneshyari.com/article/4646903

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: majun904@sjtu.edu.cn (J. Ma).

