Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Rooted cyclic permutations of lattice paths and uniform partitions

ABSTRACT

Jun Ma^{a,*}, Hao Shen^a, Yeong-Nan Yeh^b

^a Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China ^b Institute of Mathematics, Academia Sinica, Taipei, Taiwan

ARTICLE INFO

Article history: Received 17 March 2014 Received in revised form 16 December 2014 Accepted 31 January 2015 Available online 28 February 2015

Keywords: Cyclic permutation Fluctuation theory Lattice path Uniform partition

1. Introduction

Let \mathbb{N} be the set of natural numbers and \mathbb{R} the set of real numbers. An *n*-lattice path is a sequence *L* of two-dimensional vectors

 $L = (x_i, y_i)_{i=1}^n = (x_1, y_1)(x_2, y_2) \cdots (x_n, y_n),$

where $(x_i, y_i) \in \mathbb{N} \times \mathbb{R}$ for every *i*. We call the vector (x_i, y_i) a step of the path *L*.

Let $a_0 = 0$, $s_0 = 0$, and

$$a_i = \sum_{j=1}^i x_j, \qquad s_i = \sum_{j=1}^i y_j, \quad 1 \le i \le n,$$

then L corresponds to the following sequence of points

 $(a_0, s_0)(a_1, s_1) \cdots (a_n, s_n).$

We call (a_n, s_n) the end point of *L*. Let P(L) be the set of indices of points above *x*-axis in the path *L*, i.e., $P(L) = \{i \mid s_i > 0\}$, and p(L) = |P(L)|. Moreover, we use m(L) to denote the index of the leftmost point whose *y*-coordinate is maximal in the path *L*, i.e.,

 $m(L) = \min\{i \mid s_i \ge s_j \text{ for any } j \in \{0, 1, \dots, n\}\}.$

Example 1.1. Let L = (2, -1)(1, 2)(1, -1)(1, 1)(1, -1)(2, 1)(2, -1). We draw the lattice path which starts at the origin (0, 0) as given in Fig. 1.

A partition of a given set is said to be uniform if all the partition classes have the same cardinality. In this paper, we will introduce the concepts of rooted *n*-lattice path and rooted cyclic permutation and prove some fundamental theorems concerning the actions of rooted cyclic permutations on rooted lattice *n*-paths. The main results obtained have important applications in finding new uniform partitions. Many uniform partitions of combinatorial structures are special cases or consequences of our main theorems.

© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail address: majun904@sjtu.edu.cn (J. Ma).

http://dx.doi.org/10.1016/j.disc.2015.01.040 0012-365X/© 2015 Elsevier B.V. All rights reserved.

Fig. 1. The lattice path L.

Then

 $P(L) = \{2, 4, 5, 6, 7, 8\}, p(L) = 6$ and m(L) = 5.

Given an $i \in \{1, 2, ..., n\}$, the *i*th cyclic permutation L_i of L is the following sequence

 $L_i = (x_i, y_i) \cdots (x_n, y_n)(x_1, y_1) \cdots (x_{i-1}, y_{i-1}).$

Let

 $\mathcal{P}(L) = \{ p(L_i) \mid i \in \{1, 2, \dots, n\} \},\$ $\mathcal{M}(L) = \{ m(L_i) \mid i \in \{1, 2, \dots, n\} \}.$

Obviously, if $s_n > 0$ then

 $\mathcal{P}(L) \subseteq \{1, 2, \dots, n\},$ $\mathcal{M}(L) \subseteq \{1, 2, \dots, n\}.$ For every $k \in \{1, 2, \dots, n\}$, if $\mathcal{P}(L) = \{1, 2, \dots, n\}$

then there is exactly one cyclic permutation L_i of L such that $p(L_i) = k$, and if

 $\mathcal{M}(L) = \{1, 2, \ldots, n\}$

then there is exactly one cyclic permutation L_i of L such that $p(L_i) = k$. Thus, for $s_n > 0$, an interesting problem is:

Problem 1.2. Determine necessary and sufficient conditions for

 $\begin{aligned} \mathcal{P}(L) &= \{1, 2, \dots, n\}, \\ \mathcal{M}(L) &= \{1, 2, \dots, n\}, \end{aligned}$

or

 $\mathcal{P}(L) = \mathcal{M}(L) = \{1, 2, \dots, n\}.$

For $s_n \leq 0$, we have

 $\mathcal{P}(L) \subseteq \{0, 1, \dots, n-1\},$ $\mathcal{M}(L) \subseteq \{0, 1, \dots, n-1\}.$

Similarly, we are also interested in the following problem:

Problem 1.3. Determine necessary and sufficient conditions for

$$\mathcal{P}(L) = \{0, 1, \dots, n-1\},\$$

 $\mathcal{M}(L) = \{0, 1, \dots, n-1\},\$

or

 $\mathcal{P}(L) = \mathcal{M}(L) = \{0, 1, \dots, n-1\}.$

These problems have been studied by several authors and partial results obtained. In the case of $s_n = 0$, Spitzer [24] gave sufficient conditions for $\mathcal{P}(L) = \mathcal{M}(L) = \{0, 1, ..., n-1\}$. Let $L = (x_i, y_i)_{i=1}^n$ be an *n*-lattice path with $s_n = 1$, where y_i is integer for any $i \in \{1, 2, ..., n\}$. Raney [23] discovered a fact: there exists a unique cyclic permutation L_i of L such that $p(L_i) = n$. Narayana [21] gave sufficient conditions for $\mathcal{P}(L) = \{1, 2, ..., n\}$. Graham and Knuth's book [12] introduced a simple geometric argument of the results obtained by Raney. This geometric argument gave sufficient conditions for $\mathcal{P}(L) = \mathcal{M}(L) = \{1, 2, ..., n\}$. Recently, Huang, Ma and Yeh [14] solved Problems 1.2 and 1.3 completely.

Download English Version:

https://daneshyari.com/en/article/4646903

Download Persian Version:

https://daneshyari.com/article/4646903

Daneshyari.com