Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

The clique-transversal number of a $\{K_{1,3}, K_4\}$ -free 4-regular graph*

Fenling Xu, Baoyindureng Wu*, Qinqin Li

College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang 830046, PR China

ARTICLE INFO

Article history:
Received 23 June 2014
Received in revised form 29 January 2015
Accepted 30 January 2015
Available online 28 February 2015

Keywords: Clique Clique-transversal number Claw-free graphs 4-regular graphs

ABSTRACT

A clique of a graph G is a complete subgraph maximal under inclusion and having at least two vertices. A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G. The clique-transversal number, denoted by $\tau_c(G)$, is the cardinality of a minimum clique-transversal set in G. Wang et al. (2014) proved that $\tau_c(G) = \lceil \frac{n}{3} \rceil$ for any 2-connected $\{K_{1,3}, K_4\}$ -free 4-regular graph of order n, and conjectured that $\tau_c(G) \leq \frac{10n+3}{27}$ for a connected $\{K_{1,3}, K_4\}$ -free 4-regular graph of order n.

In this paper, we give a short proof of the aforementioned theorem of Wang et al. and show that the above conjecture is true, apart from only three exceptions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. For notations and terminology not defined here, we refer to [6]. For a graph G = (V, E) with vertex set V and edge set E, |V| and |E| are its order and size, respectively. For a vertex $v \in V(G)$, the neighborhood N(v) of v is defined as the set of vertices adjacent to v. The degree of v is equal to |N(v)|, denoted by $d_G(v)$. For a nonnegative integer E, E is called E-regular if E for all E

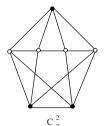
A subset $M \subseteq E(G)$ is called a *matching* if no two edges of M have a common end vertex. The vertices incident to the edges of a matching M are *saturated* by M; the others are *unsaturated*. A *perfect matching* in a graph is a matching that saturates every vertex. A matching with maximum cardinality among all matchings in G is called a *maximum matching* of G. The *matching number*, denoted by G0, is the cardinality of a maximum matching in G1. An *edge covering* of G2 is a set G3 of edges such that every vertex of G3 is incident to some edge of G4. An edge covering with minimum cardinality among all edge coverings in G5 is called a *minimum edge covering* of G6. The *edge covering number* of a graph G6, denoted by G7 is the cardinality of a minimum edge covering of G6.

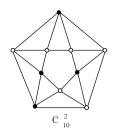
As usual, the complete graph and the cycle of order n are denoted by K_n and C_n , respectively. Let F_1, \ldots, F_k be some graphs, where k is a positive integer. The symbol $F \in \{F_1, \ldots, F_k\}$ represents that $F \cong F_i$ for some i. We say that a graph G is $\{F_1, \ldots, F_k\}$ -free if it does not contain F_i as an induced subgraph for all i. For instance, a triangle-free graph means $\{K_3\}$ -free graph, and a claw-free graph means $\{K_{1,3}\}$ -free graph, where $K_{1,3}$ is the complete bipartite graph with parts of cardinalities 1 and 3. In a graph G with at least one cycle, the girth, denoted by G(G), is the length of a shortest cycle of G. The line graph G is the graph with the vertex set G(G), in which two vertices are adjacent if and only if they are adjacent as edges in G. It is well known that every line graph is claw-free [3]. Since there does not exist four pairwise adjacent edges in G.

E-mail address: wubaoyin@hotmail.com (B. Wu).

Research supported by NSFC (No. 11161046) and by Xingjiang Talent Youth Project (No. 2013721012).

^{*} Corresponding author.





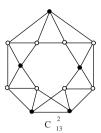


Fig. 1. Only three counterexamples to Conjecture 1.

graph of maximum degree 3, the line graph of a cubic graph is a $\{K_{1,3}, K_4\}$ -free 4-regular graph. For a graph G, G^2 denotes the graph obtained from G by adding edges connecting vertices at distance two. For the cycle C_n of order $n \ge 6$, C_n^2 is also a $\{K_{1,3}, K_4\}$ -free 4-regular graph.

A clique C of a graph G is a complete subgraph maximal under inclusion and having at least two vertices. According to this definition, an isolated vertex is not considered to be a clique here. A set $D \subseteq V$ is called a clique-transversal set of G if D meets all cliques of G, i.e., $D \cap V(C) \neq \emptyset$ for any clique C of G. The clique-transversal number, denoted by $\tau_c(G)$, is the cardinality of a minimum clique-transversal set of G. The concept of clique-transversal set in graph theory can be regarded as a special case of the transversal set in hypergraph theory [4]. Erdős et al. [7] have proved that the problem of finding a minimum clique-transversal number for a graph is NP-hard. In [7], they also showed that every graph of order n has clique-transversal number at most $n - \sqrt{2n} + \frac{3}{2}$ and observed that $\tau_c = n - o(n)$. Tuza [15], Andreae [1], and Andreae and Flotow [2] established upper bounds on clique-transversal number for chordal graphs.

Shan et al. [13] established sharp lower bounds on the clique-transversal number for connected k-regular graphs. Shan and Kang [14] give a lower bound on the clique-transversal number for claw-free 4-regular graphs and characterized the extremal graphs achieving the lower bound. Wang et al. [16] proved that $\tau_c(G) = \lceil \frac{n}{3} \rceil$ for any 2-connected $\{K_{1,3}, K_4\}$ -free 4-regular graph G of order n by induction on n. We give a short proof of this theorem.

Further, they posed the following conjecture.

Conjecture 1 (Wang, Shan and Liang [16]). If G is a connected $\{K_{1,3}, K_4\}$ -free 4-regular graph, then $\tau_c(G) \leq \frac{10n+3}{27}$.

The aim of this paper is to solve the conjecture. Indeed, we show that C_7^2 , C_{10}^2 , C_{13}^2 are only three exceptions for the assertion of Conjecture 1. A minimum clique-transversal set of C_n^2 for each $n \in \{7, 10, 13\}$ is shown in Fig. 1.

Before stating our main theorem, we introduce a family of graphs, which was first defined by O and West [12]. Let B be the graph, called a *balloon*, obtained from a complete graph K_4 by subdividing an edge of K_4 . Let T_1 be the family of trees such that every non-leaf vertex has degree 3 and all leaves have the same color in a proper 2-coloring. Let \mathcal{H}_1 be the family of cubic graphs which are obtained from trees in T_1 by identifying each leaf of such a tree with the degree 2 vertex in a copy of B.

Theorem 1.1. Let G be a connected $\{K_{1,3}, K_4\}$ -free 4-regular graph of order n. If $G \notin \{C_7^2, C_{10}^2, C_{13}^2\}$ then $\tau_c(G) \leq \frac{10n+3}{27}$, with equality if and only if G = L(H), where $H \in \mathcal{H}_1$.

2. The proof

The key ingredient for proving Theorem 1.3 is a structural result on $\{K_{1,3}, K_4\}$ -free 4-regular graphs obtained very recently by Kang et al. [10].

Theorem 2.1 (Kang, Wang and Shan [10]). If G is a connected $\{K_{1,3}, K_4\}$ -free 4-regular graph, then $G \cong F_t$ for some $t \geq 6$, or G is the line graph of a cubic graph, where $V(F_t) = \{v_1, \ldots, v_t\}$ and $E(F_t) = \{v_i v_{i+1} | 1 \leq i \leq t-1\} \cup \{v_j v_{j+2} | 1 \leq j \leq t-2\} \cup \{v_1 v_{t-1}, v_1 v_t, v_2 v_t\}$.

Note that the graph F_t defined as above, is nothing but C_t^2 . So, Theorem 2.1 can be stated equivalently in the following form.

Theorem 2.2. If G is a connected $\{K_{1,3}, K_4\}$ -free 4-regular graph of order n, then $G \cong C_n^2$ for $n \geq 6$ or G is the line graph of a cubic graph.

Biedl et al. [5] proved that for any connected cubic graph of order n, $\alpha'(G) \ge \frac{4n-1}{9}$. O and West [12] characterized those graphs attaining the lower bound.

Theorem 2.3 (O and West [12]). If G is a connected cubic graph of order n, then $\alpha'(G) \geq \frac{4n-1}{9}$, with equality if and only if $G \in \mathcal{H}_1$.

Henning et al. [9] established a sharp lower bound for connected cubic triangle-free graphs.

Download English Version:

https://daneshyari.com/en/article/4646904

Download Persian Version:

https://daneshyari.com/article/4646904

Daneshyari.com