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a b s t r a c t

A subset S of vertices of a graph G is g-convex if whenever u and v belong to S, all vertices
on shortest paths between u and v also lie in S. The g-spectrum of a graph is the set of sizes
of its g-convex sets. In this paper we consider two problems — counting g-convex sets in a
graph, and determining when a graph has g-convex sets of every cardinality (such graphs
are said to have the continuum property). We show that the problem of counting g-convex
sets of a graph whose components have diameter at most 2 is #P-complete, but for the
class of cographs these sets can be enumerated in linear time. The problem of determin-
ing whether or not the g-convexity of a graph has the continuum property is proven to be
NP-complete. While every graph is shown to be an induced subgraph of a graph whose g-
convexity possesses the continuum property, graphs with the continuum property are rare
since for any fixed ϵ ∈ (0, 1) it is shown that almost all n-vertex graphs have a gap in their
g-spectrum of size at least Ω(n1−ϵ). Moreover, it is shown that for almost all graphs, every
g-convex set is a clique, from which it follows that the number of g-convex sets in a ran-
dom graph is at least nc ln n for some constant c . The graph convexity under discussion fits
within the class of alignments on a finite set, namely those set systems on a finite set V that
contain the whole set, the empty set, and are closed under intersection. Finite topologies
are perhaps the most famous examples of alignments, and our results here are compared
and contrasted with what can be said for topologies on a finite set.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A set C of points in Euclidean space is convex if for every pair of points in C the line segment that connects them is also in S.
It is known that, in Euclidean space, the intersection of any finite number of convex sets is again convex. These observations
gave rise to the definition of abstract convexity spaces. Let V be a finite set and let M be a collection of subsets of V . Then M
is an alignment or convexity of V if M is closed under taking intersections and contains both ∅ and V . If M is an alignment
of V , then the elements of M are called convex sets and the pair (V , M) is called an aligned space. For a set S ⊆ V , the convex
hull of S, denoted by CH(S), is the smallest convex set that contains S. A point x of a convex set X is an extreme point of X if
X −{x} is also convex. An alignment (V , M) is a convex geometry if every convex set is the convex hull of its extreme points.
For a more extensive treatment of abstract convexity see [24].

It is readily seen that if (V , M) is a convex geometry on a finite set V , then V can be ordered as v1, v2, . . . , v|V | such
that Si = {vi, vi+1, . . . , v|V |} is convex and vi is an extreme point of Si for every i ∈ {1, . . . , |V |}. Thus if (V , M) is a convex
geometry on a finite set V , then M contains a convex set of cardinality i for every i ∈ {0, 1, . . . , |V |}. Convexities on a finite
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set V , that have a convex set of cardinality i for every i ∈ {0, 1, . . . , |V |}, are said to have the continuum property. While
convex geometries on a finite set have the continuum property, the converse is not true, see for example [19]. This gives rise
to the problem of determining whether a given alignment has the continuum property and how prevalent such alignments
are. In this paper we focus on alignments with the continuum property and the problem of enumerating the number of
convex sets of alignments on finite sets. To this end we define, for a given alignment M of a finite set V , the spectrum to be
the set SM = {|X | | X ∈ M}.

Let V = {v1, v2, . . . , vn}. Then for any sequence 0 = s0 < s1 < s2 < · · · < sk = n there is an alignment of V whose spec-
trum is {s0, s1, . . . , sk}. To see this observe that if X0 = ∅ and for 1 ≤ i ≤ k, Xi = {v1, v2, . . . , vsi}, thenM = {X0, X1, . . . , Xk}

is an alignment of V whose spectrum is {s0, s1, . . . , sk}. Thus any subset of {0, 1, . . . , n} that contains both 0 and n is the
spectrum of some alignment and hence for every finite set V there is an alignment of V that has the continuum property.

Moreover, if c is an integer such that 2 ≤ c ≤ 2n, then there is an alignment of V that has c convex sets, for if we
arrange the elements of the power set of V in nondecreasing order of magnitude, then the first c−1 sets in such an ordering
together with V form an alignment of V . It is evident that the problem of counting the convex sets of an alignment and
determining whether or not it has the continuum property is much more interesting if the alignment is derived from some
type of combinatorial structure.

Convexities on the points of metric spaces have been of particular interest. Let G be a graph with vertex set V and edge
set E. The distance between two vertices u and v of G, denoted by d(u, v), is the length of a shortest u–v path in G if such a
path exists and is ∞ if no such path exists. It is well known that d is a metric on V .

Themost natural way of extending Euclidean convexity to graphs is as follows: a set C of vertices in a graph G is g-convex
if, for every pair of points u and v of G, the geodesic interval, Ig [u, v], between u and v is a subset of C; where Ig [u, v] is the
collection of all vertices that belong to some u–v geodesic, i.e., a shortest u–v path. The closed interval Ig [S] of a set S ⊆ V (G)
is the union of all sets Ig [u, v]where u, v ∈ S. Thus a set S of vertices is g-convex if and only if Ig [S] = S. (Wewill not restrict
ourselves only to connected graphs. Thus g-convex sets may induce disconnected graphs.)

Let Mg(G) be the collection of all g-convex sets of G. It is not difficult to see that (V , Mg(G)) is a convexity, called the
geodesic- or g-convexity. Graphs for which the collection of g-convex sets form a convex geometry have been characterized
in [19]. Characterizations of convex geometries of other graph convexities appear, for example, in [11,16,22]. For the g-
convexity a vertex is an extreme point of a convex set S if and only if its neighbourhood in S induces a complete subgraph.
Vertices whose neighbourhoods induce complete subgraphs are called simplicial vertices.

This paper focuses on two problems: (i) the problem of counting g-convex sets and (ii) the problem of determining the
existence and prevalence of graphs for which the g-convexity has the continuum property. We will refer to the spectrum
of the g-convexity of a graph as its g-spectrum and denote it by Sg . In Section 2 we show that the problem of counting
the g-convex sets of graphs, even when restricted to graphs whose components have diameter at most 2, is #P-complete.
However, for the class of cographs, that is, those graphs without an induced P4, we show that the g-convex sets can be
enumerated in linear time. In Section 3 we show that the problem of determining whether or not the g-convexity of a graph
has the continuum property is NP-complete. Moreover, we prove that every graph is an induced subgraph of a graph whose
g-convexity possesses the continuum property. Thus graphs that have the continuum property cannot be characterized
in terms of forbidden subgraphs. Nevertheless it is shown that graphs with the continuum property are rare since almost
all graphs have a (large) gap in their g-spectrum. We conclude Section 3 by showing that for almost all graphs almost
all g-convex sets are cliques. Graphs for which all non-empty proper g-convex sets are cliques are called clique-convex
graphs. In Section 4 we describe several classes of clique-convex graphs. Among these are the Paley graphs of prime order
p ≡ 1 (mod 4). The concluding section of the paper is devoted to some additional observations and open problems, and a
comparison of results on alignments, including g-convexities, and finite topologies.

2. Counting g-convex sets

In [26] it was shown that the number of subtrees of a tree can be determined in linear time. Since the subtrees of a tree
are precisely the g-convex sets of a tree, this result shows that the number of g-convex sets of a tree can be determined in
linear time. Thus the number of g-convex sets of forests can also be determined in linear time as their number is the product
of the number of g-convex sets of each component. However, for graphs in general, the complexity of counting g-convex
sets is # P-complete, as we now proceed to show.

Remark 2.1. Let G = (V , E) be a graph of order n and size m. It was shown in [15] that the closed interval Ig [S] of a set S
of vertices can be determined in O(|S|m) time. Since S is g-convex if and only if |S| = |Ig [S]| it can be determined in O(nm)
time whether a given set of vertices is convex.

It is known that the problem of counting all independent sets of a graph is #P-complete [23]. Consequently the problem
of counting all cliques (that is, sets of vertices that induce complete subgraphs) of a graph is also #P-complete (even when
restricted to connected graphs, as the number of cliques in a disconnected graph is the sum of the number of cliques in the
components).

For a given graph G let ncl(G) be the number of cliques of G (including the empty clique) and ngc(G) the number of g-
convex sets of G (including the empty set and V (G)). Before proving themain result of this sectionwe establish the following
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