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1. Introduction

Given a graph G and a real number r, a circular r-colouring of G is a function c: V(G) — [0, r) such that 1 < |c(x) —
c(y)| < r—1whenever x and y are adjacent. The circular chromatic number of G, written as . (G), is the infimum of all r such
that G admits a circular r-colouring. In [17], it was proved that for any rational r > 2, there is a finite graph G with x.(G) =r.
A natural question is to determine the possible values of the circular chromatic number of special classes of graphs.

It is well-known [17,21,22] that for a finite graph G, x.(G) is a rational. Nevertheless, if r is irrational, one may obtain
an infinite graph G with x.(G) = r by taking the union U, G; of infinite many finite graphs, where x/(G;) = r; and r; are
rationals approaching r from below [2].

In this paper, the graphs we shall construct are finite graphs. So their circular chromatic numbers are always rational.
Nevertheless, the classes of graphs we shall consider are union closed. By taking infinite union of the constructed graphs,
we obtain infinite graphs whose circular chromatic number can be irrational. For simplicity, the graphs in the statements
include infinite graphs, and hence their circular chromatic number may be irrationals.

Itis known that for any r € [2, 4], there is a planar graph G with x.(G) = r [15,20]; forany r > 2 and any integer g, there
is a graph G of girth at least g such that x.(G) = r [19]; for any integer n > 5 and any r € [2, n — 1], there is a K,;-minor free
graph G with x.(G) = r [11], however, for K4;-minor free graphs G, x.(G) € [2, 8/3]1 U {3} [7].

In this paper, we study the circular chromatic number of line graphs. For a graph or a multigraph G, the line graph L(G) is
the graph with vertex set E(G) with two edges of G adjacent in L(G) if they share a common end vertex. The circular chromatic
index x/(G) is defined by x/(G) = x.(L(G)). Recall that the chromatic index x’(G) is equal to the chromatic number of its line
graph L(G). Thus we have x'(G) — 1 < x/(G) < x'(G),and x/ is a refinement of x’. The circular chromatic indices of graphs
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have been studied in many papers [1,3-6,8-10,12-14,16,18]. It is known that for a subcubic multigraph G, either x/(G) = 4
or x/(G) < 11/3[1]; subcubic graphs G of girth at least six have x/(G) < 7/2[10]; graphs G of large girth have x/(G) close
to A(G) [9]; for any integers k > 4,1 < a < k/2,p > 2a® + a + 1, there is a k-regular graph G with x/(G) = k + 1/p [3].
The circular chromatic index of snarks has been studied in [ 1,4-6,14], and the circular chromatic index of Cartesian product
graphs has been studied in [18]. Nevertheless, the question as which real numbers are the circular chromatic indices of
graphs remains largely open.

Let

S = {x.(G) : Gis a simple graph},
and
M = {x/(G) : Gis a multi-graph}.

We remark that the graphs in the definitions of S and M include infinite graphs. An interval (a, b) is called a gap for S if
a,b € Sand (a, b) NS = (. We define a gap for M similarly. As mentioned above, (2 + ﬁ 2+ ,—1() fork =1,2,...and
(11/3, 4) are gaps for S and M. We do not know if S or M have other gaps.

Opposite to gaps, an S-interval or an M-interval is an interval [a, b] contained in S or M, i.e., for any r € [a, b], there is a
graph G with x/(G) = r. Lukot’ka and Mazak [13] proved that [3, 10/3] is an S-interval. In [12], we generalized this result
and proved that for any odd integer n, [n, n+ 1/3] is an M-interval and [n, n+ 1/4] is an S-interval. In this paper, we extend
this result and prove that for any even integer n, [n, n 4+ 1/3] is an M-interval and [n, n + 1/6] is an S-interval.

The proof technique is similar to that in [13,12]. The difference is in the construction of the small pieces (monochromatic
networks) that are used in the construction of the desired graphs.

2. Construction of monochromatic networks
The following is the main result of this paper.

Theorem 2.1. Suppose n > 4 is an even integer. If 0 < € < 1/6, then there is an n-regular simple graph G with x/(G) = n+¢€;
if 0 < € < 1/3, then there is a n-regular multi-graph G with x/(G) = n + €.

As observed before, the graphs in Theorem 2.1 include infinite graphs. However, to prove this theorem, it suffices to
consider the case that r = n + € are rationals. Indeed, to prove Theorem 2.1, we shall construct, for each rational r in the
specified range, a finite regular graph G with x/(G) = r. As in [13,12], the graph G is obtained by gluing up small building
blocks, called monochromatic networks.

Let p, n be positive integers. A p-line n-regular monochromatic network is a triple N = (G~ , X", YN) such that

e GN is a graph whose vertices have degree n, except that there are 2p vertices of degree 1.
o X" and YV are two disjoint p-tuples of vertices of degree 1in GV. The ith element of X" and Y" are denoted by x}' and yV,
respectively. The edges incident with vertices x" and y" are denoted by e} and f", respectively.

e The graph G is n-edge-colourable and in every n-edge-colouring of GV, for each i, the two edges eﬁ\’ and fiN have the same
colour.

The p-tuples XN and YV are called the input and the output of N, respectively. If there is no confusion, we will omit the upper
indices in XV, x¥, GV, etc.

Suppose 0 < € < landr = n + . For a circular r-edge-colouring ¢ of GV, let 3(c) = le lc(fi) — c(e;)|r, where
|x —y|; = min{|x — y|, r — |x — y|}. The e-changeability of N, denoted by A.(N), is defined as the supremum of d(c), where
the supremum is taken over all the r-edge-colourings c of GV.

The following result was proved in [12]:

Theorem 2.2. Let n, q be positive integers and € > 0 be a rational number with ge < 1. Assume A is a 1-line n-regular mono-
chromatic network with A (A) = €’ forevery €’ < ¢, and Bis a 2-line n-regular monochromatic network with A (B) = qe’ < 1
forevery € < e. Moreover, there is an integer 0 < u < q such that the following is true: For any § € [0, 1), there is an (n + €)-
edge-colouring ¢s of B such that gs(e1) = 0, ps(e2) = 3¢, ps(f1) = (8 +u)e and s (f;) = (q — u)e. Then there is an n-regular
graph Gwith x/(G) =n + €.

We remark that Theorem 2.2 is proved for the case that n is odd. The same proof works for the case that n is even, with
one step needs a small modification. For the proof of Theorem 2.2 in [12], we first construct a graph G with x/(G) = r, where
each vertex of G has degree n, except that some vertices has degree 2. Moreover, there is a circular r-edge-colouring of G
such that, for each of these degree 2 vertices v, the colours assigned to the two edges incident to v are distance 1 apart. To
obtain a n-regular graph G’ with x/(G) = r, we take the disjoint union of n — 1 copies of G, for each degree 2 vertex v of G,
add edges between the n — 1 copies of v’s to form a copy K,,_1. Note that K;,_; is Type-1 when n is odd. For n is even, instead
of K,—1, we use a Type-1 (n — 2)-regular graph, say K,_, ,—>. Take the disjoint union of 2(n — 2) copies of G, for each degree
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