Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Connections between conjectures of Alon–Tarsi, Hadamard–Howe, and integrals over the special unitary group

Shrawan Kumar^a, J.M. Landsberg^{b,*}

^a University of North Carolina at Chapel Hill, United States ^b Texas A&M University, United States

ARTICLE INFO

Article history: Received 7 November 2014 Received in revised form 15 January 2015 Accepted 22 January 2015 Available online 6 March 2015

Keywords: Alon-Tarsi conjecture Latin square Geometric complexity theory Determinant Permanent Foulkes-Howe conjecture

1. Introduction

We first describe the conjectures of Alon–Tarsi, Hadamard–Howe, integrals over the special unitary group, and a related conjecture of Foulkes. We then state the equivalences (Theorem 1.9) and prove them.

1.1. Combinatorics I: The Alon-Tarsi conjecture

Call an $n \times n$ array of natural numbers a *Latin square* if each row and column consists of $[n] := \{1, ..., n\}$. Each row and column of a Latin square defines a permutation σ of n, where the ordered entries of the row (or column) are $\sigma(1), ..., \sigma(n)$. Define the sign of the row/column to be the sign of this permutation. Define the *column sign* of the Latin square to be the product of all the column signs (which is 1 or -1, respectively called *column even* or *column odd*), the *row sign* of the Latin square to be the product of the row signs and the *sign* of the Latin square to be the product of the row sign and the column sign.

Conjecture 1.1 ([1] Alon-Tarsi). Let n be even, then the number of even Latin squares of size n does not equal the number of odd Latin squares of size n.

http://dx.doi.org/10.1016/j.disc.2015.01.027 0012-365X/© 2015 Elsevier B.V. All rights reserved.

ELSEVII

We show the Alon–Tarsi conjecture on Latin squares is equivalent to a very special case of a conjecture made independently by Hadamard and Howe, and to the non-vanishing of some interesting integrals over SU(n). Our investigations were motivated by geometric complexity theory.

© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: shrawan@email.unc.edu (S. Kumar), jml@math.tamu.edu (J.M. Landsberg).

Conjecture 1.1 is known to be true when $n = p \pm 1$, where *p* is an odd prime; in particular, it is known to be true up to n = 24 [10,8].

The Alon–Tarsi conjecture is known to be equivalent to several other conjectures in combinatorics. For our purposes, the most important is the following due to Huang and Rota:

Conjecture 1.2 ([16] Column-sign Latin Square Conjecture). Let *n* be even, then the number of column even Latin squares of size *n* does not equal the number of column odd Latin squares of size *n*.

Theorem 1.3 ([16, Identities 8, 9]). The difference between the number of column even Latin squares of size n and the number of column odd Latin squares of size n equals the difference between the number of even Latin squares of size n and the number of odd Latin squares of size n, up to sign. In particular, the Alon–Tarsi conjecture holds for n if and only if the column-sign Latin square conjecture holds for n.

Remark 1.4. It is easy to see that for *n* odd, the number of even Latin squares of size *n* equals the number of odd Latin squares of size *n*.

1.2. The Hadamard-Howe conjecture

Let *V* be a finite dimensional complex vector space, let $V^{\otimes n}$ denote the space of multi-linear maps $V^* \times \cdots \times V^* \to \mathbb{C}$, the space of *tensors*. The permutation group \mathfrak{S}_n acts on $V^{\otimes n}$ by permuting the inputs of the map. Let $S^n V \subset V^{\otimes n}$ denote the subspace of symmetric tensors, the tensors invariant under \mathfrak{S}_n , which we may also view as the space of homogeneous polynomials of degree *n* on V^* . We will always view $S^n V$ as the subspace of $V^{\otimes n}$ consisting of the symmetric tensors. In particular, for $v_i \in V$, the notation

$$v_1 \cdots v_n := \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)} \in S^n V.$$

Let Sym(V) := $\bigoplus_d S^d V$, which is an algebra under multiplication of polynomials. Let GL(V) denote the general linear group of invertible linear maps $V \rightarrow V$. Consider the GL(V)-module map

$$h_{d,n}: S^d(S^n V) \to S^n(S^d V)$$

given as follows: Include $S^d(S^nV) \subset V^{\otimes nd}$. Write $V^{\otimes nd} = (V^{\otimes n})^{\otimes d}$, as *d* groups of *n* vectors reflecting the inclusion. Now rewrite $V^{\otimes nd} = (V^{\otimes d})^{\otimes n}$ by grouping the first vector space in each group of *n* together, then the second vector space in each group, etc. Next symmetrize within each group of *d* to obtain an element of $(S^dV)^{\otimes n}$, and finally symmetrize the groups to get an element of $S^n(S^dV)$.

For example $h_{d,n}((x_1)^n \cdots (x_d)^n) = (x_1 \cdots x_d)^n$ and $h_{3,2}((x_1x_2)^3) = \frac{1}{4}x_1^3x_2^3 + \frac{3}{4}(x_1^2x_2)(x_1x_2^2)$.

The map $h_{d,n}$ was first considered by Hermite [14] who proved that, when dim V = 2, the map is an isomorphism. It had been conjectured by Hadamard [12] and tentatively conjectured by Howe [15] (who wrote "is reasonable to expect") that $h_{d,n}$ is always of maximal rank, i.e., injective for $d \le n$ and surjective for $d \ge n$. A consequence of the theorem of [24] (explained below) is that, contrary to the expectation above, $h_{5,5}$ is not an isomorphism.

For any $n \ge 1$, define the *Chow variety*

$$Ch_n(V^*) := \{ P \in S^n V^* \mid P = \ell_1 \cdots \ell_n \text{ for some } \ell_j \in V^* \}.$$

(This is a special case of a Chow variety, namely of the zero cycles in projective space, but it is the only one that we discuss in this article.) In [4,5], Brion (and independently Weyman and Zelevinsky) observed that $\bigoplus_d S^n(S^dV)$ is the coordinate ring of the normalization of the Chow variety. (Given an irreducible affine variety *Z*, its *normalization* \tilde{Z} is an irreducible affine variety whose ring of regular functions is integrally closed and such that there is a regular, finite, birational map $\tilde{Z} \rightarrow Z$, see e.g., [27, Chap. II S 5].)

Lemma 1.5 (Hadamard, See e.g. [20, Section 8.6]). The kernel of the GL(V)-module map

$$\oplus h_{d,n}$$
: Sym $(S^n V) := \oplus_d S^d(S^n V) \to \oplus_d S^n(S^d V)$

is the ideal of the Chow variety.

Brion also showed that for *d* exponentially large with respect to *n*, $h_{d,n}$ is surjective [5]. McKay [23] showed that if $h_{d,n}$ is surjective, then $h_{d',n}$ is surjective for all d' > d, using $h_{d,n:0}$ defined below. It is also known that if $h_{d,n}$ is surjective, then $h_{n,d}$ is injective, see [17].

The irreducible GL(V)-modules appearing in the tensor algebra of V are indexed by partitions $\pi = (p_1 \ge p_2 \ge \cdots \ge p_q \ge 0)$, $q \le \dim V$, and denoted $S_{\pi}V$. If π is a partition of d, i.e., $|\pi| := p_1 + \cdots + p_q = d$, the module $S_{\pi}V$ appears in $V^{\otimes d}$ and in no other degree. We will use the notation $s\pi := (sp_1, \ldots, sp_q)$. Repeated numbers in partitions are sometimes expressed as exponents when there is no danger of confusion, e.g., $(3, 3, 1, 1, 1, 1) = (3^2, 1^4)$. Let SL(V) be the subgroup of GL(V) consisting of determinant 1 elements, and let $\mathfrak{sl}(V)$ denote its Lie algebra.

Download English Version:

https://daneshyari.com/en/article/4646915

Download Persian Version:

https://daneshyari.com/article/4646915

Daneshyari.com