
Discrete Mathematics 338 (2015) 1232–1238

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

Connections between conjectures of Alon–Tarsi,
Hadamard–Howe, and integrals over the special
unitary group
Shrawan Kumar a, J.M. Landsberg b,∗

a University of North Carolina at Chapel Hill, United States
b Texas A&M University, United States

a r t i c l e i n f o

Article history:
Received 7 November 2014
Received in revised form 15 January 2015
Accepted 22 January 2015
Available online 6 March 2015

Keywords:
Alon–Tarsi conjecture
Latin square
Geometric complexity theory
Determinant
Permanent
Foulkes–Howe conjecture

a b s t r a c t

We show the Alon–Tarsi conjecture on Latin squares is equivalent to a very special case
of a conjecture made independently by Hadamard and Howe, and to the non-vanishing
of some interesting integrals over SU(n). Our investigations were motivated by geometric
complexity theory.
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1. Introduction

We first describe the conjectures of Alon–Tarsi, Hadamard–Howe, integrals over the special unitary group, and a related
conjecture of Foulkes. We then state the equivalences (Theorem 1.9) and prove them.

1.1. Combinatorics I: The Alon–Tarsi conjecture

Call an n × n array of natural numbers a Latin square if each row and column consists of [n] := {1, . . . , n}. Each row and
column of a Latin square defines a permutation σ of n, where the ordered entries of the row (or column) are σ(1), . . . , σ (n).
Define the sign of the row/column to be the sign of this permutation. Define the column sign of the Latin square to be the prod-
uct of all the column signs (which is 1 or−1, respectively called column even or column odd), the row sign of the Latin square
to be the product of the row signs and the sign of the Latin square to be the product of the row sign and the column sign.

Conjecture 1.1 ([1] Alon–Tarsi). Let n be even, then the number of even Latin squares of size n does not equal the number of odd
Latin squares of size n.
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Conjecture 1.1 is known to be true when n = p ± 1, where p is an odd prime; in particular, it is known to be true up to
n = 24 [10,8].

The Alon–Tarsi conjecture is known to be equivalent to several otherconjectures in combinatorics. For our purposes, the
most important is the following due to Huang and Rota:

Conjecture 1.2 ([16] Column-sign Latin Square Conjecture). Let n be even, then the number of column even Latin squares of size
n does not equal the number of column odd Latin squares of size n.

Theorem 1.3 ([16, Identities 8, 9]). The difference between the number of column even Latin squares of size n and the number of
column odd Latin squares of size n equals the difference between the number of even Latin squares of size n and the number of odd
Latin squares of size n, up to sign. In particular, the Alon–Tarsi conjecture holds for n if and only if the column-sign Latin square
conjecture holds for n.

Remark 1.4. It is easy to see that for n odd, the number of even Latin squares of size n equals the number of odd Latin
squares of size n.

1.2. The Hadamard–Howe conjecture

Let V be a finite dimensional complex vector space, let V⊗n denote the space of multi-linear maps V ∗
× · · · × V ∗

→ C,
the space of tensors. The permutation group Sn acts on V⊗n by permuting the inputs of the map. Let SnV ⊂ V⊗n denote
the subspace of symmetric tensors, the tensors invariant under Sn, which we may also view as the space of homogeneous
polynomials of degreen onV ∗.Wewill always view SnV as the subspace of V⊗n consisting of the symmetric tensors. In particular,
for vi ∈ V , the notation

v1 · · · vn :=
1
n!


σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n) ∈ SnV .

Let Sym(V ) := ⊕d SdV , which is an algebra under multiplication of polynomials. Let GL(V ) denote the general linear group
of invertible linear maps V → V . Consider the GL(V )-module map

hd,n : Sd(SnV ) → Sn(SdV )

given as follows: Include Sd(SnV ) ⊂ V⊗nd. Write V⊗nd
= (V⊗n)⊗d, as d groups of n vectors reflecting the inclusion. Now

rewrite V⊗nd
= (V⊗d)⊗n by grouping the first vector space in each group of n together, then the second vector space in each

group, etc. Next symmetrize within each group of d to obtain an element of (SdV )⊗n, and finally symmetrize the groups to
get an element of Sn(SdV ).

For example hd,n((x1)n · · · (xd)n) = (x1 · · · xd)n and h3,2

(x1x2)3


=

1
4x

3
1x

3
2 +

3
4 (x

2
1x2)(x1x

2
2).

The map hd,n was first considered by Hermite [14] who proved that, when dim V = 2, the map is an isomorphism. It
had been conjectured by Hadamard [12] and tentatively conjectured by Howe [15] (who wrote ‘‘is reasonable to expect’’)
that hd,n is always of maximal rank, i.e., injective for d ≤ n and surjective for d ≥ n. A consequence of the theorem of [24]
(explained below) is that, contrary to the expectation above, h5,5 is not an isomorphism.

For any n ≥ 1, define the Chow variety

Chn(V ∗) := {P ∈ SnV ∗
| P = ℓ1 · · · ℓn for some ℓj ∈ V ∗

}.

(This is a special case of a Chow variety, namely of the zero cycles in projective space, but it is the only one that we discuss
in this article.) In [4,5], Brion (and independently Weyman and Zelevinsky) observed that ⊕d Sn(SdV ) is the coordinate ring
of the normalization of the Chow variety. (Given an irreducible affine variety Z , its normalization Z̃ is an irreducible affine
variety whose ring of regular functions is integrally closed and such that there is a regular, finite, birational map Z̃ → Z , see
e.g., [27, Chap. II S 5].)

Lemma 1.5 (Hadamard, See e.g. [20, Section 8.6]). The kernel of the GL(V )-module map

⊕hd,n : Sym(SnV ) := ⊕d Sd(SnV ) → ⊕d Sn(SdV )

is the ideal of the Chow variety.

Brion also showed that for d exponentially large with respect to n, hd,n is surjective [5]. McKay [23] showed that if hd,n is
surjective, then hd′,n is surjective for all d′ > d, using hd,n:0 defined below. It is also known that if hd,n is surjective, then hn,d
is injective, see [17].

The irreducible GL(V )-modules appearing in the tensor algebra of V are indexed by partitions π = (p1 ≥ p2 ≥ · · · ≥

pq ≥ 0), q ≤ dim V , and denoted SπV . If π is a partition of d, i.e., |π | := p1 + · · · + pq = d, the module SπV appears in
V⊗d and in no other degree. We will use the notation sπ := (sp1, . . . , spq). Repeated numbers in partitions are sometimes
expressed as exponents when there is no danger of confusion, e.g., (3, 3, 1, 1, 1, 1) = (32, 14). Let SL(V ) be the subgroup of
GL(V ) consisting of determinant 1 elements, and let sl(V ) denote its Lie algebra.
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