
Discrete Mathematics 338 (2015) 1252–1263

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Characterization of extremal graphs from Laplacian
eigenvalues and the sum of powers of the Laplacian
eigenvalues of graphs
Xiaodan Chen a, Kinkar Ch. Das b,∗

a College of Mathematics and Information Science, Guangxi University, Nanning 530004, Guangxi, PR China
b Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

a r t i c l e i n f o

Article history:
Received 19 May 2014
Received in revised form 17 November
2014
Accepted 13 February 2015
Available online 7 March 2015

Keywords:
Laplacian eigenvalues
Kirchhoff index
Laplacian-energy-like invariant
Nordhaus–Gaddum-type
Matching number

a b s t r a c t

For any real number α, let sα(G) denote the sum of the αth power of the non-zero Laplacian
eigenvalues of a graph G. In this paper, we first obtain sharp bounds on the largest and the
second smallest Laplacian eigenvalues of a graph, and a new spectral characterization of a
graph from its Laplacian eigenvalues. Using these results, we then establish sharp bounds
for sα(G) in terms of the number of vertices, number of edges, maximum vertex degree and
minimum vertex degree of the graph G, fromwhich a Nordhaus–Gaddum type result for sα
is also deduced. Moreover, we characterize the graphs maximizing sα for α > 1 among all
the connected graphs with given matching number.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper we consider simple graphs, namely graphs without loops and multiple edges. Let G be a graph
with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G), where |E(G)| = m. Let di denote the degree of vertex vi
in G, i = 1, 2, . . . , n. We also denote by ∆(G) and δ(G), respectively, the maximum degree and minimum degree of
vertices in G. The Laplacian matrix of G is defined as L(G) = D(G) − A(G), where A(G) is the adjacency matrix and
D(G) = diag(d1, d2, . . . , dn) is the diagonal matrix of vertex degrees of G. The Laplacian spectrum of G is

SpecL(G) = {µ1(G), µ2(G), . . . , µn(G)},

where µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥ µn(G) are the eigenvalues of L(G) (usually known as the Laplacian eigenvalues
of G), arranged in non-increasing order. It is known that µn(G) = 0 and the multiplicity of 0 is equal to the number of
connected components in G. Thus, a graph G is connected if and only if µn−1(G) > 0, and hence µn−1(G) is named the
algebraic connectivity of G [5]. For more properties of the Laplacian spectrum of graphs one may refer to [7,15,17].

The Laplacian matrix of a graph and its spectrum can be used in several areas of mathematical, physical and chemical
research [17]. Historically, one of the first applications of the Laplacian matrix is in the proof of the well-knownMatrix-Tree
Theorem which states that the number of spanning trees in a graph is equal to the absolute value of any cofactor of the
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Laplacian matrix of the graph. Another classical application is related to the Kirchhoff index of a connected graph G, which
was, originally, defined by Klein and Randić [10] as

Kf (G) =


i<j

rij ,

where rij is the resistance distance between the vertices vi and vj in G. It is somewhat surprising that this index can be
expressed via the non-zero Laplacian eigenvalues [8], i.e.,

Kf (G) = n
n−1
i=1

1
µi(G)

.

The Kirchhoff index has found a great deal of applications in electric circuit, probabilistic theory and chemistry, and many
of its mathematical properties have been established [23].

Recently, a novel Laplacian-spectrum-based graph invariant, known as Laplacian-energy-like invariant, was put forward
by Liu and Liu [12]:

LEL(G) =

n−1
i=1

√
µi.

The motivation for introducing LEL was in its analogy to the earlier studied graph energy and Laplacian energy. Many
mathematical investigations for LEL have been communicated, see [11] for a survey.

As a natural extension of Kf and LEL, Zhou [21] introduced the following graph spectral invariant:

sα(G) =

h
i=1

µα
i (G), (1.1)

where α is an arbitrary real number and h is the number of non-zero Laplacian eigenvalues of the graph G. It is obvious that
Kf (G) = n s−1(G) (for a connected graph G) and LEL(G) = s1/2(G).

Various (upper and lower) bounds on sα(G) have been established. Zhou [21] first obtained several bounds for sα(G)
in terms of the number of vertices, number of edges, maximum degree and the number of spanning trees of the graph G.
Later in [2], Chen and Qian estimated sα(G) using the number of vertices, connectivity and chromatic number of the graph
G. Recently, Das, Xu and Liu [4] established several bounds on sα(G) in terms of the number of vertices, number of edges,
maximum degree, clique number, independence number and the number of spanning trees of the graph G. For more on this
aspect we refer the reader to [13,18].

A matching in a graph G is a set of its disjoint edges, and the matching number of G, denoted by β(G), is the maximum
cardinality of a matching over all its possible matchings. Let Gn, β be the set of connected graphs with n vertices and
matching number β . Zhou and Trinajstić [22] determined the extremal Kirchhoff index of graphs in Gn, β and characterized
the corresponding extremal graphs. Recently, Xu and Das [19] considered similar problems for the Laplacian-energy-like
invariant.

The paper is organized as follows. In Section 2, we list some previously known results that will be used in the subsequent
sections. In Section 3, we obtain sharp bounds on the largest and the second smallest Laplacian eigenvalues of a graph, and a
new spectral characterization of a graph from its Laplacian eigenvalues. Using the results presented in Sections 2 and 3, we
establish in Section 4 sharp bounds for sα(G) in terms of the number of vertices, number of edges, maximum vertex degree
and minimum vertex degree of the graph G, from which a Nordhaus–Gaddum type result for sα is also deduced. Finally, in
Section 5, we characterize the graphs maximizing sα for α > 1 among all connected graphs with given matching number.

2. Preliminaries

Let Kn and Kn1, n2 (n1 + n2 = n), as usual, denote the complete graph and the complete bipartite graph on n vertices,
respectively. Denote by G ∪ H the vertex-disjoint union of graphs G and H . In particular, k G stands for the vertex-disjoint
union of k copies of G. Let G∨H be the graph obtained from G∪H by adding all possible edges joining the vertices in Gwith
those in H . Denote by G the complement of the graph G. Clearly, G ∨ H ∼= G ∪ H .

We now list some known results that will be useful in the subsequent sections.

Lemma 2.1 ([17]). Let G and H be two graphs with n and n′ vertices, respectively. Then

(i) SpecL

G


= {n − µn−1(G), n − µn−2(G), . . . , n − µ1(G), 0};
(ii) SpecL (G ∪ H) = {µ1(G), . . . , µn−1(G), µ1(H), . . . , µn′−1(H), 0, 0}.

For a graph G, if its vertex set V (G) can be partitioned into two non-empty subsets U and W such that each vertex in U
has degree r and each vertex in W has degree s, then G will be called an (r, s)-semiregular graph. In particular, if r = s in
an (r, s)-semiregular graph, then Gwill be called an r-regular graph.
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