Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Uniformly resolvable designs with block sizes 3 and 4

Hengjia Wei^a, Gennian Ge^{a,b,*}

^a School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China
^b Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048, China

ARTICLE INFO

Article history: Received 31 July 2015 Received in revised form 29 October 2015 Accepted 30 October 2015 Available online 28 November 2015

Keywords: Uniformly resolvable design Resolvable group divisible design Frame

ABSTRACT

A uniformly resolvable design (URD) is a resolvable design in which each parallel class contains blocks of only one block size *k*. Such a class is denoted *k*-pc and for a given *k* the number of *k*-pcs is denoted r_k . Let *v* denote the number of points of the URD. For the case of block sizes 3 and 4 (both existing), the necessary conditions imply that $v \equiv 0 \pmod{22}$. It has been shown that almost all URDs with permissible r_3 and r_4 exist for $v \equiv 0 \pmod{24}$, $v \equiv 0 \pmod{60}$, $v \equiv 36 \pmod{144}$ or $v \equiv 36 \pmod{108}$. In this paper, we prove that the necessary conditions for the existence of a URD with block sizes 3 and 4 are also sufficient, except when v = 12, $r_3 = 1$ and $r_4 = 3$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let v and λ be positive integers, and let K and M be two sets of positive integers. A group divisible design, denoted GDD(K, M; v), is a triple (X, \mathcal{G} , \mathcal{B}) where X is a set of points, \mathcal{G} is a partition of X into groups, and \mathcal{B} is a collection of subsets of X, called *blocks*, such that

1. $|B| \in K$ for each $B \in \mathcal{B}$,

2. $|G| \in M$ for each $G \in \mathcal{G}$,

3. $|B \cap G| \leq 1$ for each $B \in \mathcal{B}$ and each $G \in \mathcal{G}$, and

4. each pair of elements of X from distinct groups is contained in exactly one block.

If $K = \{k\}$, respectively $M = \{m\}$, then the GDD(K, M; v) is simply denoted GDD(k, M; v), respectively GDD(K, m; v). A GDD(K, 1; v) is called a *pairwise balanced design* and denoted PBD(K; v). A GDD(k, m; mk) is called a *transversal design* and denoted TD(k, m). We usually use an "exponential" notation to describe the multiset M: a K-GDD of type $g_1^{u_1}g_2^{u_2} \dots g_s^{u_s}$ is a GDD in which every block has size from the set K and in which there are u_i groups of size $g_i, i = 1, 2, \dots, s$.

In a GDD(K, M; v)(X, \mathcal{G} , \mathcal{B}) a parallel class is a set of blocks, which partitions X. If \mathcal{B} can be partitioned into parallel classes, then the GDD(K, M; v) is said to be *resolvable* and denoted RGDD(K, M; v). Analogously, a resolvable PBD(K; v) is denoted RPBD(K; v). A parallel class is said to be *uniform* if it contains blocks of only one size k (k-pc). If all parallel classes of an RPBD(K; v) are uniform, the design is said to be *uniformly resolvable*. Here, a uniformly resolvable design RPBD(K; v) is denoted URD(K; v). In a URD(K; v) the number of parallel classes with blocks of size k is denoted r_k , $k \in K$.

In [19], Rees introduced the notation of URDs and showed that all admissible URDs($\{2, 3\}$; v) exist. For $K = \{2, 4\}$, almost all URD(K; v) have been constructed in [8,25], with a small number of cases unsettled. For $K = \{3, 4\}$, we summarize the known results as follows.

http://dx.doi.org/10.1016/j.disc.2015.10.042 0012-365X/© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China. *E-mail address*: gnge@zju.edu.cn (G. Ge).

Theorem 1.1. The necessary conditions for the existence of a URD({3, 4}; v) with $r_3, r_4 > 0$ are $v \equiv 0 \pmod{12}$, r_4 is odd, $1 \le r_4 \le \frac{v}{3} - 1$ and $r_3 = \frac{v - 1 - 3r_4}{2}$.

Theorem 1.2 ([7,23–25]). Let $v \equiv 0 \pmod{12}$. There exists a URD({3, 4}; v) with $r_4 = 1, 3, 5, 7$ or 9, except for v = 12 and $r_4 \in \{3, 5, 7, 9\}$ or v = 24 and $r_4 = 9$.

Theorem 1.3 ([24,25]). Let $v \equiv 0 \pmod{12}$. There exists a URD({3, 4}; v) with $r_3 = 1, 4, 7$ or 10, except for v = 12 and $r_3 \in \{1, 7, 10\}$, and possibly excepting:

1. $r_3 = 7$ and $v \in \{84, 108, 132, 156, 204, 228, 276, 348, 372, 444\}$; or 2. $r_3 = 10$ and $v \in \{108, 132, 156, 204, 228, 276, 348, 372, 492\}$.

Theorem 1.4 ([24]). There exist all admissible $URDs(\{3, 4\}; v), v \equiv 0 \pmod{12}, v < 200$, except when v = 12 and $r_4 = 3$ and possibly excepting:

1. v = 84; $r_4 = 23$; 2. v = 108: $r_4 \in \{29, 31\}$; 3. v = 120: $r_4 \in \{27, 29, 31\}$; 4. v = 132: $r_4 \in \{35, 37, 39\}$; 5. v = 156: $r_4 \in \{41, 43, 45, 47\}$.

Theorem 1.5 ([25,24]). There exist all admissible URDs($\{3, 4\}; v$) for $v \equiv 0 \pmod{24}$, possibly excepting:

1. v = 120 and $r_4 \in \{(v/3) - 13, (v/3) - 11, (v/3) - 9\};$ 2. v = 264 and $r_4 = (v/3) - 9;$ 3. v = 408 and $r_4 \in \{(v/3) - 15, (v/3) - 13, (v/3) - 11, (v/3) - 9\};$ 4. v = 456 and $r_4 \in \{(v/3) - 11, (v/3) - 9\};$ 5. v = 552 and $r_4 \in \{(v/3) - 13, (v/3) - 11, (v/3) - 9\};$ 6. v = 984 and $r_4 \in \{(v/3) - 13, (v/3) - 11, (v/3) - 9\};$ 7. v = 1128 and $r_4 = (v/3) - 9;$ 8. v = 3288 and $r_4 = (v/3) - 9.$

Theorem 1.6 ([24]). There exist all admissible URDs($\{3, 4\}$; v) for $v \equiv 0 \pmod{60}$.

In this paper, we consider the entire existence problem of the URD($\{3, 4\}$; v) and show that the necessary conditions are also sufficient, with only one exception.

Theorem 1.7. There exists a URD({3, 4}; v) with r_3 , $r_4 > 0$ if and only if $v \equiv 0 \pmod{12}$, r_4 is odd and $1 \le r_4 \le \frac{v}{3} - 1$, except for v = 12 and $r_4 = 3$.

2. Preliminaries

A group divisible design $(X, \mathcal{G}, \mathcal{B})$ is called *frame resolvable* (and is referred to as a *frame*) if its block set \mathcal{B} admits a partition into *holey parallel classes*, each holey parallel class being a partition of $X \setminus H$ for some group $H \in \mathcal{G}$. The groups in a frame are often referred to as *holes*. The *hole type* of a frame is just its group type as a GDD. It is well known that in a *k*-frame, each hole must have size a multiple of k - 1; in fact the number of holey parallel classes with respect to a given hole *H* is precisely |H|/(k - 1).

Theorem 2.1 ([5,6,10,17,13,18,22,27]). The necessary conditions for the existence of a k-frame of type h^u , namely, $u \ge k + 1$, $h \equiv 0 \pmod{k-1}$ and $h(u-1) \equiv 0 \pmod{k}$, are also sufficient for

k = 2:

k = 3; and for

k = 4, and possibly excepting:

1. h = 36 and u = 12;

2. $h \equiv 6 \pmod{12}$ and

- (a) h = 6 and $u \in \{7, 23, 27, 35, 39, 47\}$;
- (b) h = 18 and $u \in \{15, 23, 27\}$;
- (c) $h \in \{30, 66, 78, 114, 150, 174, 222, 246, 258, 282, 318, 330, 354, 534\}$ and $u \in \{7, 23, 27, 39, 47\}$;
- (d) $h \in \{n : 42 \le n \le 11238\} \setminus \{66, 78, 114, 150, 174, 222, 246, 258, 282, 318, 330, 354, 534\}$ and $u \in \{23, 27\}$.

Download English Version:

https://daneshyari.com/en/article/4646922

Download Persian Version:

https://daneshyari.com/article/4646922

Daneshyari.com