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a b s t r a c t

Weconstruct a family of recursive constructions such that for any i ∈ {0, 1, 3, 4, 6, 7, 9, 10}
and j ∈ {0, 1, . . . , 11}, several arbitrary nonorientable triangular embeddings of every
complete graph Km, m ≡ i (mod 12), can be incorporated into a minimal nonorientable
embedding of Km̄, m̄ ≡ j (mod 12). The existence of such recursive constructions implies
the following important interdependency of the sets of nonisomorphic minimal nonori-
entable embeddings of Kn for different residue classes of n modulo 12: if for some i ∈

{0, 1, 3, 4, 6, 7, 9, 10}, the number of nonisomorphic nonorientable triangular embeddings
of a graph Km, m ≡ i (mod 12), is large enough, then for any other j ∈ {0, 1, . . . , 11}, the
number of nonisomorphic minimal nonorientable embeddings of some graph Km̄, m̄ ≡

j (mod 12), is also large enough. As a consequence, using Grannell and Knor’s (2013) re-
sults for Kn, n ≡ 1 or 9 (mod 12), we show that there is a certain positive constant a such
that for any i ∈ {0, 1, . . . , 11}, there is an infinite set (a linear class) of values of n, where
n ≡ i (mod 12), such that the number of nonisomorphic minimal nonorientable embed-
dings of Kn is at least nan2−o(n2) as n → ∞.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We can differentiate cellular embeddings of graphs in surfaces as labeled objects (in this case we speak about different
labeled embeddings, they have different face sets) and as unlabeled objects (in this case we speak about nonisomorphic
embeddings). In what follows we consider only cellular embeddings of graphs.

Let K be a graph without loops and multiple edges. An m-gonal face of an embedding of K will be designated as a cyclic
sequence [v1, v2, . . . , vm] of vertices obtained by listing the incident vertices when traversing the boundarywalk of the face
in some chosen direction. The sequences [v1, v2, . . . , vm] and [vm, . . . , v2, v1] designate the same face.

Two embeddings f and f ′ of a graph K are different labeled embeddings if f has and f ′ does not have a face [v1, v2, . . . , vm].
Two embeddings f and f ′ of K are isomorphic if there is an automorphism ψ of K such that if [v1, v2, . . . , vm] is a face of f ,
then [ψ(v1), ψ(v2), . . . , ψ(vm)] is a face of f ′.

The nonorientable genus of a graph is the smallest q such that the graph can be embedded in Nq, the sphere with q
crosscaps attached; any such embedding is called a minimal nonorientable embedding of the graph. During the proof of
the Map Color Theorem for nonorientable surfaces [10] one minimal nonorientable embedding was constructed for every
complete graphKn. Constructingminimal nonorientable embeddings ofKn was carried in a differentway for twelve cases: for
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every i ∈ {0, 1, . . . , 11}, some specific rotation schemes (and later specific current graphs) were used to construct minimal
nonorientable embeddings of Kn for all n ≡ i (mod 12).

An embedding of a graph is triangular if every face is 3-gonal. Euler’s formula allows a possibility for the complete graph
Kn to have a triangular embedding in a nonorientable surface if n ≡ 0 or 1 (mod 3) only, and we have that only for n ≡ 0
or 1 (mod 3) the minimal nonorientable embeddings of Kn are triangular. We will use the acronym NTE for a nonorientable
triangular embedding.

In this paper we consider the natural question on the number of nonisomorphic minimal nonorientable embeddings of
complete graphs.

It is known (see [2]) that the number of nonisomorphic triangular embeddings of the complete graph Kn cannot exceed
nn2/3.

Using recursive constructions and a cut-and-paste technique it was shown [1,4] that there are at least 2n2/54−o(n2)

nonisomorphic face 2-colorable NTE’s of Kn for some families of n such that n ≡ 1 or 3 (mod 6)). This approach having
to do with face 2-colorable triangular embeddings does not work in the case of complete graphs of even order and does not
work in the case of constructing nontriangular minimal nonorientable embeddings of complete graphs.

Index one current graphs were applied [9] to show that there are constants M, c > 0, b ≥ 1/12 such that for every
n ≥ M , there are at least c2bn nonisomorphic minimal (triangular for n ≢ 2 (mod 3), and nontriangular for n ≡ 2 (mod 3))
nonorientable embeddings of Kn. Up to the present paper, this result was the only known in the literature result on the
number of nonisomorphic nontriangular minimal nonorientable embeddings of complete graphs.

Recently, using face 2-colorable triangular embeddings of complete tripartite graphs it was shown [2] (see also [3,5–7])
that, for a certain positive constant a and for an infinite number of values of n, where n ≡ 1 or 9 (mod 12), the number
of nonisomorphic NTE’s of Kn is at least nan2−o(n2). At first [2], these results were obtained for rather sparse sets of values
of n (by ‘‘sparse‘‘we mean that the number of suitable values not exceeding m is of order log2 m). More recently [7] lower
bounds of the form nan2 were established for linear classes of values of n (by a linear class of values of nwemean an infinite
set {a + bt : t = 1, 2, . . .} of values of n, where a and b are integer constants). This approach having to do with face 2-
colorable triangular embeddings does not work in the case of complete graphs of even order and does not work in the case
of constructing nontriangular minimal nonorientable embeddings of complete graphs.

In the present paper we construct a family of recursive constructions such that for any i ∈ {0, 1, 3, 4, 6, 7, 9, 10}
and j ∈ {0, 1, . . . , 11}, several arbitrary NTE’s of every complete graph Km, m ≡ i (mod 12), can be incorporated into
a minimal nonorientable embedding of Km̄, m̄ ≡ j (mod 12). The existence of such recursive constructions implies the
following important interdependency of the sets of nonisomorphic minimal nonorientable embeddings of Kn for different
residue classes of n modulo 12: if for some i ∈ {0, 1, 3, 4, 6, 7, 9, 10}, the number of nonisomorphic nonorientable
triangular embeddings of a graph Km, m ≡ i (mod 12), is large enough, then for any other j ∈ {0, 1, . . . , 11}, the number
of nonisomorphic minimal nonorientable embeddings of some graph Km̄, m̄ ≡ j (mod 12), is also large enough. As a
consequence, using Grannell and Knor’s (2013) results for Kn, n ≡ 1 or 9 (mod 12), we show that there is a certain positive
constant a such that for any i ∈ {0, 1, . . . , 11}, there is an infinite set (a linear class) of values of n, where n ≡ i (mod 12),
such that the number of nonisomorphic minimal nonorientable embeddings of Kn is at least nan2−o(n2) as n → ∞. We also
obtain (Theorem2) lower bounds of the form2bn2−o(n2) (as n → ∞) on the number of nonisomorphicminimal nonorientable
embeddings of complete graphs Kn for some classes of even n and of complete graphs Kn for some classes of odd n, where
n ≡ 2 (mod 3).

The paper is organized as follows. In Section 2 we prove the main results of the paper. The proofs are based on the
existence of recursive constructions described in Section 4. To obtain the recursive constructions we use index 2, 3, and 4
current graphs. To facilitate construction checking in Section 4, somematerial about index 2, 3, and 4 current graphs is given
in Section 3.

2. Recursive constructions and nonisomorphic minimal embeddings

By a one-hamiltonian embedding of a complete graph Km we mean an embedding such that one face is m-gonal and
bounded by a hamiltonian cycle of the graph, and all other faces are triangular. Given a triangular embedding of Kn, if we
delete a vertex of the embedded graph, we obtain a one-hamiltonian embedding of Kn−1 which is said to be induced by the
triangular embedding of Kn. Clearly, if two one-hamiltonian embeddings f and f ′ of Kn−1 induced, respectively, by triangular
embeddings ϕ1 and ϕ2 of Kn are isomorphic, then the embeddings ϕ1 and ϕ2 are isomorphic as well. Hence we have the
following.

Claim 1. If for every of M nonisomorphic NTE’s of Kn we take a one-hamiltonian embedding of Kn−1 induced by the triangular
embedding, we obtain M nonisomorphic nonorientable one-hamiltonian embeddings of Kn−1.

For k(n − 1) ≤ m, denote by G(n|k|m) the m-vertex graph which is obtained if we take vertex-disjoint k(n − 1)-gonal
cycles C1, C2, . . . , Ck (they are called the special cycles ofG) and an (m−k(n−1))-vertex set and then join by an edge any pair
of vertices not belonging to the same special cycle. Form ≢ 2 (mod 3), by an embedding R(n|k|m)wemean an embedding
of the graph G(n|k|m) such that there are k(n − 1)-gonal faces with boundaries C1, C2, . . . , Ck, respectively, and all other
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