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a b s t r a c t

The goal of this paper is two-fold. We first focus on the problem of deciding whether two
monomial rotation symmetric (MRS) Boolean functions are affine equivalent via a permu-
tation. Using a correspondence between such functions and circulant matrices, we give a
simple necessary and sufficient condition. We connect this problem with the well known
Ádám’s conjecture from graph theory. As applications, we reprove easily several main re-
sults of Cusick et al. on the number of equivalence classes under permutations for MRS in
prime power dimensions, as well as give a count for the number of classes in pq number
of variables, where p, q are prime numbers with p < q < p2. Also, we find a connection
between the generalized inverse of a circulant matrix and the invertibility of its generat-
ing polynomial over F2, modulo a product of cyclotomic polynomials, thus generalizing a
known result on nonsingular circulant matrices.

Published by Elsevier B.V.

1. Introduction

The class of rotation symmetric Boolean functions (RSBFs) has received some attention from a combinatorial and
cryptographic perspective. The initial study on the nonlinearity of these functions (called idempotents there) was done
by Filiol and Fontaine [19]. Later on, the nonlinearity and correlation immunity of such functions have been studied in detail
in [9,23,31,30,37,38]. Applications of such functions in hashing has also been investigated by Pieprzyk and Qu [35].Wewant
to mention also several papers [15–17,19,36] dealing with some other properties of RSBF, as well as their involvement in S-
boxes. These functions are interesting to look into, since their space is much smaller (≈2

2n
n ) than the total space of Boolean

functions (22n) and the set contains functions with good cryptographic properties. It has been experimentally demonstrated
that there are functions in this class which are good in terms of balancedness, nonlinearity, correlation immunity, algebraic
degree and algebraic immunity (resistance against algebraic attack) [16].

It is interesting to note that the famous Patterson–Wiedemann functions [33] that achieve nonlinearity 16,276 (strictly
greater than nonlinearity 215−1

− 2(15−1)/2 obtained by bent functions concatenation) in 15 variables are in fact rotation
symmetric. Moreover, Kavut et al. [25–27] proved that there exist rotation symmetric functions in 9 variables having
nonlinearity 241 and 242 (which is also strictly greater than the bent concatenation nonlinearity 29−1

− 2(9−1)/2), which
was rather surprising and gives further motivation for the investigation of rotation symmetric Boolean functions.

Recently, there is some sustained effort to investigate the affine equivalence of some classes of Boolean functions, in
particular the rotation symmetric Boolean functions (RSBF). In spite of their simplicity, the problem proves to be quite chal-
lenging. Wemention here the papers [3,7,10–13] (and the references therein), which deal with low degrees (two to four) of
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monomial RSBFs, or someparticular cases of the dimensionwhere the functions are defined.Here,wepropose amore elegant
(we believe) approach for equivalence, which works for any degree, and apply it to count some cubic equivalence classes.

Here is an outline of this work. Section 2 gives basic definitions, including monomial rotation symmetric (MRS) Boolean
functions and affine equivalence, and a known result for such quadratic functions. Section 3 discusses computational
complexity of determining affine equivalence. Section 4 gives several useful facts about circulant matrices. In Section 5, we
define S-equivalence (affine-equivalent by permutation matrix) and show in detail the connection between MRS functions
and circulant matrices, resulting in our Theorem 5.2 that S-equivalence of the functions is the same as P-Q equivalence
of the matrices. In Section 6 we use this connection, along with a powerful result of Wiedemann and Zieve [40], to give
new proofs for counting the number of equivalence classes for cubic MRS functions, in three cases: degree n = p prime
(our Theorem 6.3), n = pk prime power (Theorem 6.5), and n = pq product of two primes (Theorem 6.6). In Section 7, we
explore how a circulant matrix inverse, pseudoinverse, or generalized inverse might relate to function equivalence. First,
Theorem 7.3 generalizes a previous result, to give a condition on the factors of the generating polynomial that guarantee
the circulant matrix has a circulant reflexive generalized inverse. Then Theorem 7.8 gives a necessary condition on weights
when functions are S-equivalentwith invertible circulantmatrices. Also, Theorem7.12 gives some facts about the casewhen
the matrix has a pseudoinverse.

2. Preliminaries

A Boolean function f on n variables may be viewed as a mapping from Fn
2 = {0, 1}n into the two-element field F2; it can

also be interpreted as the output column of its truth table f , that is, a binary string of length 2n, f = [f (0, 0, . . . , 0), f (1, 0,
. . . , 0), . . . , f (1, 1, . . . , 1)]. The set of all Boolean functions is denoted by Bn.

The addition operator over F2 is denoted by +. An n-variable Boolean function f can be considered to be a multivariate
polynomial over F2. This polynomial can be expressed as a sum of products representation of all distinct kth order products
(0 ≤ k ≤ n) of the variables. More precisely, f (x1, . . . , xn) can be written as

a0 +


1≤i≤n

aixi +


1≤i<j≤n

aijxixj + · · · + a12...nx1x2 . . . xn,

where the coefficients a0, aij, . . . , a12...n ∈ {0, 1}. This representation of f is called the algebraic normal form (ANF) of f . The
number of variables in the highest order product term with nonzero coefficient is called the algebraic degree, or simply the
degree of f and denoted by deg(f ). A Boolean function is said to be homogeneous if its ANF contains terms of the same degree
only.

Functions of degree at most one are called affine functions. An affine function with constant term equal to zero is called a
linear function. Let x = (x1, . . . , xn) andω = (ω1, . . . , ωn) both belong toFn

2 and x·ω = x1ω1+· · ·+xnωn. TheHamming dis-
tance between x andω, denoted by d(x, ω), is the number of positionswhere x, ω differ. Also the (Hamming) weight, denoted
by wt(x), of a binary string x is the number of ones in x. An n-variable function f is said to be balanced if its output column
in the truth table contains equal number of 0’s and 1’s (i.e.,wt(f ) = 2n−1). The nonlinearity of an n-variable function f is the
minimumdistance to the entire set of all affine functions, distance known to be bounded fromabove by 2n−1

−2n/2−1.We de-
fine the (right) rotation operatorρn on a vector (x1, x2, . . . , xn) ∈ Fn

2 byρn(x1, x2, . . . , xn) = (xn, x1, x2, . . . , xn−1).Hence,ρk
n

acts as a k-cyclic rotation on an n-bit vector. A Boolean function f is called rotation symmetric if for each input (x1, . . . , xn) in
Fn
2, f (ρ

k
n(x1, . . . , xn)) = f (x1, . . . , xn), for 1 ≤ k ≤ n. That is, the rotation symmetric Boolean functions are invariant under

cyclic rotation of inputs. The inputs of a rotation symmetric Boolean function can be divided into partitions so that each par-
tition consists of all cyclic shifts of one input. A partition is generated by Gn(x1, x2, . . . , xn) = {ρk

n(x1, x2, . . . , xn)|1 ≤ k ≤ n}
and the number of sets in this partition is denoted by gn. Thus the number of n-variable RSBFs is 2gn . Let φ(k) be Euler’s phi-
function, then Stănică and Maitra [37] give gn =

1
n


k|n φ(k) 2

n
k . We refer to [37,31,30] for the formula on how to calculate

the number of partitions with weight w, for arbitrary n and w, as well as the number hn of full length n classes (Ref. [28]
corrects the count of [37] for hn, when n is not a prime power).

A rotation symmetric function f (x1, . . . , xn) can be (for short) written as

a0 + a1x1 +


a1jx1xj + · · · + a12...nx1x2 . . . xn,

where the coefficients a0, a1, a1j, . . . , a12...n ∈ {0, 1}, and the existence of a representative term x1xi2 . . . xil implies the
existence of all the terms from Gn(x1xi2 . . . xil) in the ANF. This representation of f (not unique, since one can choose any
representative in Gn(x1xi2 . . . xil)) is called the short algebraic normal form (SANF) of f . If the SANF of f contains only one
term, we call such a function amonomial rotation symmetric (MRS) function. Certainly, the number of terms in the ANF of a
monomial rotation symmetric function is a divisor of n (see [37]). If that divisor is in fact n, we call the function a full-cycle
MRS, otherwise a short-cycle MRS.

We say that two Boolean functions f (x) and g(x) in Bn are affine equivalent if g(x) = f (xA + b), where A ∈ GLn(F2)
(n×n nonsingular matrices over the finite field F2 with the usual operations) and b is an n-vector over F2. We say f (xA+b)
is a nonsingular affine transformation of f (x). It is easy to see that if f and g are affine equivalent, then they have the same
weight and nonlinearity: wt(f ) = wt(g) and Nf = Ng (these are examples of affine invariants).

The relevance of these two invariants can be inferred by recalling the well-known result (see [10], for example).
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