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a b s t r a c t

The height h(e) of an edge e in a 3-polytope is themaximum degree of the two vertices and
two faces incidentwith e. In 1940, Lebesgue proved that every 3-polytopewithout so called
pyramidal edges has an edge e with h(e) ≤ 11. In 1995, this upper bound was improved
to 10 by Avgustinovich and Borodin. Recently, we improved it to 9 and constructed a
3-polytope without pyramidal edges satisfying h(e) ≥ 8 for each e.

The purpose of this paper is to prove that every 3-polytope without pyramidal edges
has an edge e with h(e) ≤ 8.

In different terms, this means that every plane quadrangulation without a face incident
with three vertices of degree 3 has a face incident with a vertex of degree at most 8, which
is tight.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

By a 3-polytope we mean a finite convex 3-dimensional polytope. As proved by Steinitz [31], 3-polytopes are in 1–1
correspondence with 3-connected planar graphs.

The degree d(x) of a vertex or face x in a 3-polytope M is the number of incident edges. A k-vertex and k-face is one of
degree k, a k+-vertex has degree at least k, and so on. Elements of a 3-polytope are its vertices and faces.

The height h(e) of an edge e in M is the maximum of the degrees of two vertices and two faces incident with e.
An edge is pyramidal if it is incident with at least three elements of degree 3 (in fact, edges incident with four elements

of degree 3 exist only in the tetrahedron). Note that each edge of the n-pyramid has height n. Thus if pyramidal edges are
allowed in a 3-polytope, it can happen that all its edges are of unbounded height.

In 1940, Lebesgue [23] proved that every 3-polytope without pyramidal edges has an edge of height at most 11. In 1995,
this bound was lowered to 10 in Avgustinovich–Borodin [1].

A well-known lower bound 7 on the height of edges is obtained by capping every 4-face of the Archimedean (3, 4, 4, 4)-
solid (in which every vertex is incident with a 3-face and three 4-faces).

Recently, we improved [9] the upper bound to 9 and constructed a 3-polytope satisfying h(e) ≥ 8 for each e.
The purpose of this paper is to prove that 8 is attained from above.

Theorem 1. Every 3-polytope without pyramidal edges contains an edge of height at most 8, which is tight.

In addition to the pyramid, the necessity of forbidding pyramidal edges in Theorem 1 is confirmed by the following
construction, in which every edge is arbitrarily high and which contains non-pyramidal edges.
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We take a double 2n-pyramid with 2n-vertices x, z and a cycle y1 . . . y2n of 4-vertices. Every edge ykyk+1 with 1 ≤ k ≤ 2n
(addition modulo 2n) is replaced by a path ykyk,1 . . . yk,n−3yk+1, where all new vertices are of degree 2. Finally, whenever
1 ≤ k ≤ 2n, we join all 2-vertices yk,1, . . . , yk,n−3 to x if k is even or to z otherwise. It remains to note that every edge has
height at least n and every edge incident with a 4-vertex is non-pyramidal.

Theorem 1 can easily be translated into the language of quadrangulations as follows.

Theorem 2. Every quadrangulated 3-polytope without faces incident with three 3-vertices has a face incident with 8−-vertices
only, which is tight.

To deduce Theorem 2 from Theorem 1, we take a quadrangulation Q (which is a bipartite graph), color its vertices with
colors V and F , join the vertices colored V in each face by an edge, and delete all edges of Q . Clearly, an edge of height at
most 8 in the polytope obtained produces a face of height at most 8 in Q .

We recall some results on the structure of 5−-faces in 3-polytopes. By ∆ and δ denote the maximum and minimum
vertex degree of M , respectively. The weight of a face in M is the degree sum of its boundary vertices, and w(M), or simply
w, denotes the minimum weight of 5−-faces inM .

We say that f is a face of type (k1, k2, . . .) or simply a (k1, k2, . . .)-face if the set of degrees of the vertices incident with f
is majorized by the vector (k1, k2, . . .).

Back in 1940, Lebesgue [23] described 5−-faces in normal plane maps.

Theorem 3 (Lebesgue [23]). Every normal plane map has a 5−-face of one of the following types:
(3, 6, ∞), (3, 7, 41), (3, 8, 23), (3, 9, 17), (3, 10, 14), (3, 11, 13),
(4, 4, ∞), (4, 5, 19), (4, 6, 11), (4, 7, 9), (5, 5, 9), (5, 6, 7),
(3, 3, 3, ∞), (3, 3, 4, 11), (3, 3, 5, 7), (3, 4, 4, 5), (3, 3, 3, 3, 5).

The classical Theorem3, alongwith other ideas in Lebesgue [23], has a lot of applications to plane graph coloring problems
(first examples of such applications and a recent survey can be found in [7,28,30]).

Some parameters of Lebesgue’s Theorem were improved for narrow classes of plane graphs. In 1963, Kotzig [21] proved
that every plane triangulation with δ = 5 satisfies w ≤ 18 and conjectured that w ≤ 17. In 1989, Kotzig’s conjecture was
confirmed by Borodin [2] in a more general form.

Theorem 4 (Borodin [2]). Every normal plane map with δ = 5 has a (5, 5, 7)-face or a (5, 6, 6)-face, where all parameters are
tight.

Theorem 4 also confirmed a conjecture of Grünbaum [16] of 1975 that the cyclic connectivity (defined as the minimum
number of edges to be deleted from a graph to obtain two components each containing a cycle) of every 5-connected planar
graph is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [29]).

We note that w is unbounded in the set of all 3-polytopes with (4, 4, ∞)-faces, as follows from the n-pyramid, double
n-pyramid, and a related construction in which every 3-face is incident with a 3-vertex, 4-vertex, and n-vertex. The same is
true concerning (3, 3, 3, ∞)-faces: take the double 2n-pyramid and delete all even upper spokes and all odd lower ones to
obtain a quadrangulation having only (3, 3, 3, n)-faces.

For plane triangulations without 4-vertices, Kotzig [22] proved w ≤ 39, and Borodin [4], confirming Kotzig’s conjecture
in [22], proved w ≤ 29, which is best possible due to the dual of the twice-truncated dodecahedron. Borodin [5] further
shows that each triangulated 3-polytope without (4, 4, ∞)-faces satisfies w ≤ 29, and that for triangulations without
4-vertices adjacent to each other there is a sharp bound w ≤ 37.

For an arbitrary 3-polytope, Theorem3yieldsw ≤ max{51, ∆+9}. Horňák and Jendrol’ [17] strengthened this as follows:
if there are neither (4, 4, ∞)-faces nor (3, 3, 3, ∞)-faces, then w ≤ 47. Borodin and Woodall [12] proved that forbidding
(3, 3, 3, ∞)-faces implies w ≤ max{29, ∆ + 8}.

For quadrangulated 3-polytopes, Avgustinovich and Borodin [1] improved the description of 4-faces implied by
Lebesgue’s Theorem as follows: (3, 3, 3, ∞), (3, 3, 4, 10), (3, 3, 5, 7), (3, 4, 4, 5).

Some other results related to Lebesgue’s Theorem can be found in the already mentioned papers, in a recent survey by
Jendrol’ and Voss [19], and also in [3,11,13–15,18,20,24,26,25,27,32].

In 2002, Borodin [6] strengthened Lebesgue’s Theorem 3 as follows (the entries marked by an asterisk are proved in [6]
to be best possible).

Theorem 5 (Borodin [6]). Every normal plane map has a 5−-face of one of the following types:
(3, 6, ∞∗), (3, 8∗, 22), (3, 9∗, 15), (3, 10∗, 13), (3, 11∗, 12),
(4, 4, ∞∗), (4, 5∗, 17), (4, 6∗, 11), (4, 7∗, 8), (5, 5∗, 8), (5, 6, 6∗),
(3, 3, 3, ∞∗), (3, 3, 4∗, 11), (3, 3, 5∗, 7), (3, 4, 4, 5∗), (3, 3, 3, 3, 5∗).

Recently, precise descriptions of the structure of faces were obtained for 3-polytopes with δ ≥ 4 and for triangulated
3-polytopes.
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