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a b s t r a c t

Aldred and Plummer (1999) have proved that every m-connected K1,m−k+2-free graph of
even order contains a perfect matching which avoids k prescribed edges. They have also
proved that the result is best possible in the range 1 ≤ k ≤

1
2 (m + 1). In this paper, we

show that if 1
2 (m+2) ≤ k ≤ m−1, their result is not best possible. We prove that ifm ≥ 4

and 1
2 (m + 2) ≤ k ≤ m − 1, every K

1,


2m−k+4
3

-free graph of even order contains a perfect

matching which avoids k prescribed edges. While this is a best possible result in terms of
the order of a forbidden star, if 2m − k + 4 ≡ 0 (mod 3), we also prove that only finitely
many sharpness examples exist.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For a connected graph H , a graph G is said to be H-free if G does not contain an induced subgraph isomorphic to H . In
particular, a K1,3-free graph is called a claw-free graph, and given an integer n ≥ 3, a K1,n-free graph is called a star-free
graph. Sumner [9] studied the existence of a perfect matching in a star-free graph, and proved the following theorem. The
first part was also proved by Las Vergnas [5].

Theorem A ([9,5]).
(1) A connected claw-free graph of even order has a perfect matching.
(2) For every integer m with m ≥ 2, an m-connected K1,m+1-free graph of even order has a perfect matching.

This theorem is best possible in the following senses. There are infinitely many connected K1,4-free graphs of even order
without a perfect matching, and form ≥ 2, infinitely manym-connected K1,m+2-free graphs of even order without a perfect
matching.

Plummer and Saito [7] investigated a sort of converse of Theorem A. They studied whether it is possible to guarantee the
existence of a perfect matching by forbidding a connected graph other than a star, and gave the following negative answer.
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Theorem B ([7]). Let H be a connected graph of order at least three, and let m be an integer with m ≥ 2.
(1) If there exists a positive integer n0 such that every connected H-free graph of even order at least n0 has a perfect matching,

then either H = K1,3 or H = K1,2.
(2) If there exists a positive integer n0 such that every m-connected H-free graph of even order at least n0 has a perfect matching,

then H = K1,l for some l with 2 ≤ l ≤ m + 1.

According to Theorem B, as long as we forbid one graph to guarantee the existence of a perfect matching, Theorem A
gives a complete solution, and the situation does not change even if we allow a finite number of exceptions.

Plummer [6] introduced the notion of a k-extendable graph. Let k be a nonnegative integer and let G be a connected graph
of even order at least 2k + 2 with a perfect matching. Then G is said to be k-extendable if every set of k independent edges
lies in some perfect matching of G. This notion was later extended to the property E(m, n) by Porteous and Aldred [8]. Let
m and n be nonnegative integers and let G be a connected graph of even order at least 2(m + n + 1). Then G is said to be
E(m, n) if for every pair of disjoint sets of independent edges M and N of order m and n, respectively, there exists a perfect
matching Lwith M ⊂ L and N ∩ L = ∅.

Chen [3] studied the extendability of star-free graphs, and proved the following theorem.

Theorem C ([3]). Let m and k be integers with 1 ≤ k ≤
1
2m. Then every m-connected K1,m−2k+2-free graph of even order at

least 2k + 2 is k-extendable.

This result was extended by Aldred and Plummer [1].

Theorem D ([1]). Let m, k and l be integers with 1 ≤ 2l+ k ≤ m. Then every m-connected K1,m−2l−k+2-free graph of even order
at least 2(k + l + 1) is E(l, k).

However, the proof of Theorem D in [1] does not use the fact that the k deleted edges form a matching. Therefore, it
actually proves the following stronger statement.

Theorem E ([1]). Let m, k and l be integers with 1 ≤ 2l+ k ≤ m. Let G be an m-connected K1,m−2l−k+2-free graph of even order
at least 2(k + l + 1). Then for every F ⊂ E(G) with |F | = k, G − F is l-extendable.

In order to highlight the theme of this paper, we set l = 0.

Theorem F. Let k and m be integers with 1 ≤ k ≤ m. Let G be an m-connected K1,m−k+2-free graph of even order at least
2(k + 1). Then for every F ⊂ E(G) with |F | ≤ k, G − F has a perfect matching.

Theorem F is best possible if 0 ≤ k ≤
1
2 (m + 1). For a positive integer r , let Gr = Km + (kK2 ∪ (m − 2k + 1)K1 ∪ K2r−1),

where for graphs G and H , we denote by G + H and G ∪ H the join and the union of G and H , respectively, and for a positive
integer n, we denote by nG the union of n copies of G. Then Gr is an m-connected K1,m−k+3-free graph of even order, but Gr
does not have a perfect matching which avoids the edges in kK2.

Though the above example shows the sharpness of Theorem F, it only exists in the range 0 ≤ k ≤
1
2 (m+1). The purpose

of this paper is to prove that in the range 1
2 (m + 2) ≤ k ≤ m − 1, Theorem F is no longer best possible. For this range of k,

we prove the following theorem, which is our main result.

Theorem 1. Let k and m be integers with m ≥ 4 and 1
2 (m + 2) ≤ k ≤ m − 1. Let G be an m-connected K

1,

2m−k+4

3

-free graph
of even order. Then for every F ⊂ E(G) with |F | = k, G − F has a perfect matching.

If k > 1
2 (m+ 2), then

 2m−k+4
3


> m− k+ 2. Therefore, Theorem 1 forbids a larger star than that in Theorem D and still

guarantees the existence of a perfect matching avoiding k prescribed edges.
In the next section, we introduce several invariants of a multigraph and study their properties. Using them, we prove

the main theorem in Section 3. In Section 4, we discuss the sharpness of the result. And in Section 5, we give concluding
remarks.

As far as the statement of Theorem 1 is concerned, multiple edges have little meaning. However, in the proof of the
theorem,wedealwith an auxiliary graphwhichmayhavemultiple edges. Therefore,we strictly distinguish the term ‘‘graph’’
and ‘‘multigraph’’ in this paper. When we say a ‘‘multigraph’’, we refer to a situation in which multiple edges are allowed.
On the other hand, when we say a ‘‘graph’’ or a ‘‘simple graph’’, we refer to a graph without multiple edges. Loops are not
allowed throughout this paper. For a multigraph H , the underlying graph of H is the graph obtained from H by replacing
every multiple edge with a single edge.

For standard graph-theoretic notation and terminology, we refer the reader to [2]. Let G be amultigraph and let x ∈ V (G).
We denote by NG(x) and degG(x) the neighborhood and the degree of x in G, respectively. Let X and Y be sets of vertices in
G with X ∩ Y = ∅. Then we define NG(X) by NG(X) =


x∈X NG(x). Also we denote by EG(X, Y ) the set of edges in G with

one endvertex in X and the other in Y , and we define eG(X, Y ) by eG(X, Y ) = |EG(X, Y )|. Furthermore, G[X] denotes the
subgraph of G induced by X . We denote by α(G), ∆(G), w(G) and co(G) the independence number, the maximum degree,
the number of components and the number of odd components, respectively, of G. For F ⊂ E(G), let V (F) denote the set of
vertices that are endvertices of the edges in F . Let |G| denote the order of G.

We denote by Pn and Cn the path and the cycle of order n, respectively.While a path is always a simple graph,we shall con-
sider C2, a cycle of order two, in some parts of the proof, which is amultigraph consisting of two vertices joined by two edges.
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