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1. Introduction

The coloring problem considered in this article has restrictions on edges within distance two apart. The distance between
two edges e and €’ in a graph is the minimum k for which there is a sequence ey, ey, . . ., e, of distinct edges such that e = ey,
e = ey, and e;_; shares an end vertex with e; for 1 < i < k. A strong edge-coloring of a graph is a function that assigns to
each edge a color such that any two edges within distance two apart receive different colors. A color class of a strong edge-
coloring is the set of all edges using the same color. A strong k-edge-coloring is a strong edge-coloring using at most k colors.
An induced matching is an edge set in which two distinct edges are of distance at least two. Finding a strong k-edge-coloring
is equivalent to partitioning the edge set of the graph into k induced matchings. The strong chromatic index of a graph G,
denoted by x,(G), is the minimum k such that G admits a strong k-edge-coloring.

Strong edge-coloring was first studied by Fouquet and Jolivet [ 11,12] for cubic planar graphs. By a greedy algorithm, it is
easy to see that x/(G) < 242 —2A + 1 for any graph G of maximum degree A. Fouquet and Jolivet [ 11] established a Brooks
type upper bound x/(G) < 2A? — 2A, which is not true only for G = Cs as pointed out by Shiu and Tam [26]. The following
conjecture was posed by Erdés and NeSetfil [8,9] and revised by Faudree, Gyarfas, Schelp and Tuza [10]:

Conjecture 1. If G is a graph of maximum degree A, then x/(G) < A% + L%Jz.
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For graphs with maximum degree A = 3, Conjecture 1 was verified by Andersen [1] and by Horak, Qing and Trotter [15]
independently. For A = 4, while Conjecture 1 says that x,(G) < 20, Hordk [14] obtained x;/(G) < 23 and Cranston [7]
proved x/(G) < 22. Molloy and Reed [22] proved that for large A every graph of maximum degree A has x/(G) < 1.99842
using a probabilistic method. Mahdian [ 19] proved that for a C;-free graph G, x/(G) < (2+40(1))A?/ In A. Faudree, Gyarfas,
Schelp and Tuza [10] proved that for graphs where all cycle lengths are multiples of four, x;(G) < A?. They mentioned
that this result could probably be improved to a linear function of the maximum degree. Brualdi and Massey [2] improved
the upper bound to x;(G) < «p for such graphs, where « and § are the maximum degrees of the respective partitions.
Nakprasit [23] proved that if G is bipartite and the maximum degree of one partite set is at most 2, then x,(G) < 2A. Chang
and Narayanan [6] proved that x/(G) < 8A — 6 for chordless graphs G. This settles the above question by Faudree, Gyarfas,
Schelp and Tuza [ 10] in the positive, since graphs with cycle lengths divisible by 4 are chordless graphs. They also established
that x/(G) < 10A — 10 for 2-degenerate graphs G.

Strong edge-coloring on planar graphs is also extensively studied in the literature. Faudree, Gyarfas, Schelp and Tuza [10]
asked whether x/(G) < 9if Gis cubic planar. If this upper bound is proved to be true, it would be the best possible. Faudree,
Gyarfas, Schelp and Tuza [10] used the Four-color Theorem to show that x;(G) < 4A(G) + 4 for any planar graph G of
maximum degree A. They also exhibited a planar graph G whose strong chromatic index is 4A(G) — 4. Their proof also
gives a consequence that y;(G) < 3A for planar graphs G of girth at least 7. Chang, Montassier, Pecher and Raspaud [5]
further proved that x/(G) < 2A — 1 for planar graphs G with large girth. Strong chromatic index for Halin graphs was first
considered by Shiu, Lam and Tam [25] and then studied in [4,16,18,26]. For trees G they obtained that x/(G) = o (G), where

0(G) = max {d¢(u) + dg(v) — 1} (1)
uveE(G)
is an easy lower bound of x/(G), that is,

0 (G) < x.(G) for any graph G. (2)

An edge xy in a graph G is o-tight if dg(x) + dc(y) — 1 = o (G). Liao [17] studied cacti, which are graphs whose blocks are
cycles or complete graphs of two vertices. Notice that cacti are planar graphs and include trees. He established that for a
cactus G, x;(G) = o (G) if the length of any cycle is a multiple of 6, x;(G) < o(G) + 1if the length of any cycle is even, and
x(G) < L%gﬁj in general. For other results on strong edge-coloring, see [3,13,20,21,24,27].

The purpose of this paper is to determine strong chromatic indices of cacti. The method is by means of jellyfish graphs
to be introduced later. We first establish a decomposition theorem saying that the strong chromatic index of a graph is the
maximum strong chromatic index of a block-jellyfish, which is a block together with edges with one vertex in the block and
the other outside. Then we determine the strong chromatic index of a C,-jellyfish, which is a graph obtained from the cycle
G, by attaching pendent edges to the cycle vertices.

2. Preliminary

Foranintegern > 3,the n-cycleis the graph C, with vertex set V(C,) = {v1, va, ..., vp}andedge set E(C,) = {vjviz1: 1 <
i < n}, where v, = vy. More generally, when the indices of the vertices of an n-cycle are arithmetic expressions, they are
considered to be taken modulo n.

A cut-vertex of a graph is a vertex whose removing results in a graph with more components than the old graph. A block
of a graph is a maximal connected subgraph without cut-vertices in itself. Any two blocks of a graph have at most one vertex
in common, and if they meet at one vertex, then it is a cut-vertex. For a block H of a graph G, any vertex u € V(G) — V(H)
is adjacent to at most one vertex v € V(H), and if the vertex v exists then it is a cut-vertex of G. An end block is a block
with exactly one cut-vertex. A block graph is a graph whose blocks are complete graphs. A cactus is a graph whose blocks are
cycles or complete graphs of two vertices.

For a graph H, the H-jellyfish H(p,: v € V(H)) is the graph obtained from H by adding p, new vertices adjacent to v
for each vertex v in H. An edge joining a new vertex to v is called a pendent edge at v. A block-jellyfish of a graph G is the
H-jellyfish H' for some block H of G, where the new vertices of H are all vertices of V (G) — V (H) having exactly one neighbor
in V(H). A block-jellyfish is trivial if it is an H-jellyfish for an end block H which is K5, otherwise it is non-trivial.

Lemma 2. If H is a subgraph of G, then x{(H) < x,(G).

As any three consecutive edges in C, use different colors in a strong edge-coloring, the following lemma is an easy
consequence of parity checking.

Proposition 3. If n > 3, then x/(C,) = 5 for n =5, x{(Cy) = 3 for n is a multiple of 3 and x/(C,) = 4 otherwise.
Notice that a trivial block-jellyfish H] is a star; and if it is not a component, then it is a subgraph of a non-trivial block-
jellyfish H;. By Lemma 2, x/(H;) < x{(H5).

Theorem 4. Suppose G is a connected graph that is not a star. If G has exactly r non-trivial block-jellyfishes Gy, G,, .. ., G, then
Xs/(G) = MaXi<i<r X;(Gi)-
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