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a b s t r a c t

In this paper we analyze stable fluid vacation models with exhaustive discipline, in which
the fluid source is modulated by a background continuous-timeMarkov chain and the fluid
is removed at constant rate during the service period. Due to the continuous nature of the
fluid the state space of the model becomes continuous, which is the major novelty and
challenge of the analysis. We adapt the descendant set approach used in polling models to
the fluid vacation model. We provide steady-state vector Laplace Transform and mean of
the fluid level at arbitrary epoch. First we consider the case when the fluid input rate is less
than the fluid service rate during service and later we study the case when the fluid input
rate is larger than the fluid service rate in some states of the model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fluid vacation model is an extension of the classical vacation model (see in [1,2]), in which fluid takes the role of
the customer of the classical model. Due to the continuous nature of the fluid, the flow in and the removal of fluid are
characterized by rates. Hence the state space becomes continuous, which is a challenge in the analysis comparing to that of
the discrete state space of the classical vacation model. This requires different analysis techniques.

In this paper we investigate a fluid vacation model with exhaustive service when the fluid source is modulated by a
background Markov chain. The main idea of the analysis is the extension of the descendant set approach (see in [3]) to
the continuous fluid model context. This together with the transient analysis of the input fluid flow enables to describe
the evolution of the joint fluid level and the state of the background Markov chain between the vacation end and vacation
start epochs—on the Laplace transform (LT) level. The resulting relations are called the governing equations. From themwe
determine the steady-state probability vector of the background Markov chain at the vacation start epochs. In the course of
the analysis we derive a relation for the steady-state vector LT and vector mean of the fluid level at arbitrary epoch in terms
of the previously mentioned steady-state probability vector. We also derive the steady-state LT of the service time, which
is the counterpart of the busy period analysis in the classical vacation queue.

This paper is an extended version of [4]. One of the two main additional contributions of the current work compared
to [4] is the explicit expression for the embedded vector at service completion and the results which are built on that
(e.g. Corollary 3), the second additional contribution is the extension of the model to the cases when the effective fluid
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rates (i.e., the fluid input rate minus the fluid service rate) can be positive during the service period. This extension makes
the majority of the results obtained for the restricted model with strictly negative effective fluid rates invalid. We apply a
new methodology based on the matrix analytic analysis of Markov fluid queues [5,6].

The rest of the paper is organized as follows. In Section 2 we present the fluid vacation model and the concept of
embedding matrix LTs, which is needed for the extension of the descendant set approach to fluid model. In Section 3 we
establish the governing equations of themodel. The derivation of steady-state results follows in Section 4. Section 5 discusses
the case with positive effective fluid rate during service and Section 6 presents numerical examples. Finally, Section 7
concludes the paper.

2. Model and notation

2.1. Model description

We consider a fluid vacation model with Markov modulated load and exhaustive discipline. The model has an infinite
fluid buffer.

The input fluid flow of the buffer is determined by a modulating CTMC (Ω(t) for t ≥ 0) with state space S = {1, . . . , L}
and generatorQ. When this Markov chain is in state j (Ω(t) = j) then fluid flows to the buffer at rate rj for j ∈ {1, . . . , L}. We
define the diagonal matrix R = diag(r1, . . . , rL). During the service period the server removes fluid from the fluid buffer at
finite rate d > 0. Consequently, when the overallMarkov chain is in state j (Ω(t) = j) then the fluid level of the buffer during
the service period changes at rate rj−d, otherwise during the vacation periods it changes at rate rj, because there is no service.
In the vacation model the length of the service period is determined by the applied discipline. In this work we consider the
exhaustive discipline. Under exhaustive discipline the fluid is removed during the service period until the buffer becomes
empty. Each time the buffer becomes empty the server takes a vacation period. During vacation periods there is no service
thus the fluid level of the buffer is increasing by the actual flowing rates. The consecutive vacation times are independent
and identically distributed (i.i.d.). The random variable of the vacation time, its probability distribution function (pdf), its
Laplace transform (LT) and its mean are denoted byσ , σ(t) =

d
dt Pr(σ < t) and σ ∗(s) = E(e−sσ ), σ = E(σ), respectively.

We define the cycle time (or simply cycle) as the time between just after the starts of two consecutive service periods.
We set the following assumptions on the fluid vacation model:

• A.1 The generator matrix Q of the modulating CTMC is irreducible.
• A.2 The fluid rates are positive and finite, i.e. rj > 0 for j ∈ {1, . . . , L}.
• A.3 The fluid level strictly decreases during the service period, i.e., rj < d for j ∈ {1, . . . , L}.

Let π be the stationary probability vector of the modulating Markov chain. Due to assumption A.1 the equations

πQ = 0, πe = 1. (1)

uniquely determine π, where e is the L × 1 column vector of ones. The stationary fluid flow rate, λ, and the utilization ρ, is
given as

λ = πRe, ρ =
λ

d
, (2)

respectively. The necessary condition of the stability of the fluid vacation model is that the mean fluid arrival rate λ = πRe
is less than d, which is equivalent with ρ < 1.

If the amount of fluid served during a service periodwere limited, like e.g. in case of amodel with time-limited discipline,
then further restrictionwould be needed for the sufficiency. However themodelwith the exhaustive discipline does not have
any load-independent limitation for a service period, therefore the above necessary condition is also a sufficient one for the
stability of the system.

2.2. Notational conventions and embedded matrix LTs

For the i, jth element of the matrix Z the notations Zij or [Z]ij are used. Similarly zj and [z]j denote the jth element of
vector z. When X∗(s), Re(s) ≥ 0 is a matrix LT, X(k) denotes its kth (k ≥ 1) derivative at s = 0, i.e., X(k)

=
dk

dsk
X∗(s)|s=0 and

X(0) denotes its value at s = 0, i.e., X(0)
= X∗(0). Similar notations are applied for vector LT x∗(s) and scalar LT x∗(s).

Let Z be an L × L rate matrix which has the following properties:
• the diagonal elements are negative (Zi,i < 0) and the other elements are non-negative (Zi,j ≥ 0, for i ≠ j),
• the row sums are zero.

For Re(v) ≥ 0 let

H(v) = Dv − Z, (3)

be a linear L × L matrix function of the complex variable v, where Z is a rate matrix and D is diagonal and its diagonal
elements are positive, i.e. [D]j,j > 0 for j ∈ {1, . . . , L}. That is Z and D are real. The matrix function −H(v) has the following
properties:
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