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a b s t r a c t

Freeman’s centralization (Freeman, 1978) for a given centrality index is a measure of
how central a vertex is regarding to how central all the other vertices are with respect
to the given index. The transmission of a vertex v in a graph G is equal to the sum of
distances between v and all other vertices of G. In this paper we study the centralization
of transmission, in particular, we determine the graphs on n vertices which attain the
maximum or minimum value. Roughly, the maximizing graphs are comprised of a path
which has one end glued to a clique of similar order. The minimizing family of extremal
graphs consists of three paths of almost the same length, glued together in one end-vertex.
We conclude the paper with some problems for possible further work.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The transmission of a vertex v ∈ V (G) (in some literature also called farness or vertex Wiener value) is defined as the sum
of the lengths of all shortest paths between a chosen vertex and all other vertices in G, i.e.

W (v) =


u∈V (G)\{v}

dG(u, v).

Using transmission, one can define a well-known topological index that we also use later in the definition of transmission
centralization. Let us now briefly describe this index. The Wiener index W (G), introduced by Wiener [14], is a graph index
defined for connected graph G as the sum of the lengths of shortest paths between all unordered pairs of vertices in G,
formally

W (G) =
1
2


v∈V (G)

W (v).

It is the oldest topological index related to molecular branching and based on its success, many other topological indices
correlated to distance matrix of chemical graphs have been developed subsequently toWiener’s work. Wiener index was at
first used for predicting the boiling points of paraffins [14], but later a strong correlation between Wiener index and other
chemical or physical properties of a compoundwas found, such as critical points in general [13], the density, surface tension,
and viscosity of compounds liquid phase [11] and the van der Waals surface area of the molecule [6]. There are some recent
papers on Wiener index of trees [7], common neighborhood graphs [3,8] and line graphs [15]. Finding graph extremals for
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Wiener index and its derivatives is nicely summarized in a recent survey by Gutman et al. [16]. It is easy to conclude that
among connected graphs on n vertices, minimal and maximal values of Wiener index are

 n
2


and


n+1
3


obtained at Kn and

Pn, respectively. In the class of trees, both extremal graphs are Sn and Pn withWiener values (n − 1)2 and
n+1

3


, respectively.

These and many other bounds for the Wiener index are presented in [16,9].
In graph theory, centrality refers to indices which identify the most important/central vertices within a graph. Those

most commonly used measures are betweenness centrality, closeness centrality, degree and eccentricity. Several aspects
of correlation between Wiener index and betweenness centrality are presented in the paper of Caporossi et al. [2], where
authors assign betweenness-related weights to edges of a graph that sum up to its Wiener index. For graphs with fixed
order they also find extremal graphs for lower and upper bounds of betweenness centrality. A theorem of Wiener [14],
shows how the Wiener index of a tree is decomposed into (easily calculable) edge-contributions. In [12], authors introduce
a vertex-version of this theorem for general graphs by using the correlation of Wiener index to betweenness centrality.

The centralization of a graph is ameasure of how central itsmost central vertex is with respect to how central all the other
vertices are. The general definition of centralization for graphs, proposed by Freeman [5], assigns a centralization measure
F1 to any existing centrality measure F , i.e.

F1(v) =


u∈V (G)

(F(v) − F(u)) .

Centralization measures calculate the sum of differences in centrality between the most central vertex in a graph and all
other vertices, thus every centralitymeasure can have its own centralizationmeasure. In 2006, Butts [1] studied the extremal
values of degree centralization among all graphs on n vertices. Everett, Dankelmann and Sinclair [4] also studied extremal
values for centralization in two-mode graphs. Transmission centralization of a vertex v ∈ V (G) is obtained by applying
Freeman’s notion of the centralization to Wiener index, formally

W1(v) =


u∈V (G)\{v}

(W (v) − W (u)) = n · W (v) − 2W (G), (1)

where W (G) is the Wiener index of a graph G. In order to compare centralization values of graphs with different sizes,
Freeman in the definition of centralization originally used a normalized formula, dividing expression (1) by the theoretically
largest such sum of differences in any graph from the given class of graphs [5]. Since in this paper, the size of our graph is of
constant size, we omit the normalizing denominators.

Among all graphs on n vertices Gn, those that achieve maximum or minimum Wiener centralization value will be
called extremal graphs. In the paper, we assume that n > 1. Instead of W (v) and W1(v) we will sometimes also write
W (v,G) and W1(v,G), to emphasize the underlying graph we are dealing with. The eccentricity of a vertex w is defined as
maxv∈V (G) dG(w, v).

The paper is structured as follows. In section two, we present the structure of graphs that attain maximal Wiener
centralization while in section three we focus on the lower bound. In section four we conclude the paper with some ideas
for possible future work.

2. Upper bound of transmission centralization

In lemmas that follow, we assume that G is a connected graph on n vertices that maximizes transmission centralization
among all graphs in Gn. Also, let w ∈ V (G) be a vertex at which transmission centralization is maximized and let d be the
eccentricity of the vertex w. By the choice of w, it is easy to see that for any t ∈ V (G) we have

W (w,G) ≥ W (t,G) and W1(w,G) ≥ 0. (2)

Let Li be the set of vertices at distance i from w in G, i.e. Li = {v ∈ G; dG(v, w) = i} and let li = |Li|. We say that Li is the ith
layer from w. Note that L0 = {w}.

Lemma 1. Let i be a non-negative integer. Then vertices in Li and Li+1 induce a complete graph.

Proof. Assume that there exist two non-connected vertices u, v ∈ Li ∪ Li+1 that violate the claim of this lemma. It is easy
to see that adding an edge uv does not affect the value of W (w). On the other hand, introducing the edge uv (or any new
edge) always decreases Wiener index of the whole graph. Therefore, introducing the edge uv increases expression (1), a
contradiction. �

An example of the connected members of G4 that are consistent with Lemma 1 can be observed on Fig. 1. A layer is trivial if
it is comprised of one vertex.

Lemma 2. Layers L1, L2, . . . , L⌊n/2⌋−1 are trivial.

Proof. Let s =
 n

2


. We proceed with contradiction, assuming that some of these layers in G is non-trivial. We prove

the claim by introducing an operation that iteratively transform nearest s − 1 vertices from w into a path, increasing its
transmission centralization at each step.
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