Note

Edge coloring multigraphs without small dense subsets

P.E. Haxell ${ }^{\text {a,* }}$, H.A. Kierstead ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
${ }^{\mathrm{b}}$ School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA

ARTICLE IN F O

Article history:

Received 30 July 2014
Received in revised form 9 June 2015
Accepted 10 June 2015
Available online 9 July 2015

Keywords:

Multigraphs
Edge coloring
Goldberg's conjecture

Abstract

One consequence of a long-standing conjecture of Goldberg and Seymour about the chromatic index of multigraphs would be the following statement. Suppose G is a multigraph with maximum degree Δ, such that no vertex subset S of odd size at most Δ induces more than $(\Delta+1)(|S|-1) / 2$ edges. Then G has an edge coloring with $\Delta+1$ colors. Here we prove a weakened version of this statement.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this note we study edge colorings of (loopless) multigraphs. We use the standard notation $\chi^{\prime}(G)$ to denote the chromatic index of the multigraph G, that is, the smallest number of matchings needed to partition the edge set of G. It is clear that the maximum degree $\Delta(G)$ is a lower bound for $\chi^{\prime}(G)$ for every graph G. The classical upper bounds for $\chi^{\prime}(G)$ are $\chi^{\prime}(G) \leq 3 \Delta(G) / 2$ (Shannon's Theorem [15]) and $\chi^{\prime}(G) \leq \Delta(G)+\mu(G)$ (Vizing's Theorem [18]), where $\mu(G)$ denotes the maximum edge multiplicity of G.

For a multigraph G, a subset $S \subseteq V(G)$, and a subgraph $H \subseteq G$, we denote by $G[S]$ the subgraph induced by S, by $\|H\|$ the number of edges in H, and by $|H|$ the number of vertices in H. We also set $G[H]=G[V(H)]$ and $\|S\|=\|G[S]\|$. Let $\rho(S)$ be the quantity $\frac{\|S\|}{\lfloor|S| / 2\rfloor}$. The parameter $\rho(G)$ is defined by

$$
\rho(G)=\max \{\rho(S): S \subseteq V(G)\}
$$

Then $\lceil\rho(G)\rceil$ is a lower bound on $\chi^{\prime}(G)$, since for a set S on which $\rho(G)$ is attained, each matching in $G[S]$ has size at most $\lfloor|S| / 2\rfloor$ and therefore at least $\left\lceil\frac{\|S\|}{\lfloor|S| / 2\rfloor}\right\rceil$ colors are needed to color the edges of $G[S]$. On the other hand, when $\rho(G) \geq \Delta(G)$ the chromatic index can also be bounded above in terms of $\lceil\rho(G)\rceil$. Kahn [7] gave the bound $\chi^{\prime}(G) \leq(1+o(1))\lceil\rho(G)\rceil$, which was recently improved by Plantholt [10] to

$$
\chi^{\prime}(G) \leq\left(1+\frac{\log _{3 / 2}\lceil\rho(G)\rceil}{\lceil\rho(G)\rceil}\right)\lceil\rho(G)\rceil .
$$

The focus of this paper is the long-standing conjecture due to Goldberg [3] (see also [4]) and independently Seymour [14] which states that the chromatic index of G should be essentially determined by either $\rho(G)$ or $\Delta(G)$.

[^0]
Conjecture 1. For every multigraph G

$$
\chi^{\prime}(G) \leq \max \{\Delta(G)+1,\lceil\rho(G)\rceil\}
$$

Goldberg [4] also proposed the following sharp version for multigraphs with $\rho(G) \leq \Delta(G)-1$.
Conjecture 2. For every multigraph G, if $\rho(G) \leq \Delta(G)-1$ then $\chi^{\prime}(G)=\Delta(G)$.
Conjecture 1 implies that if $\chi^{\prime}(G)>\Delta+k, k \geq 1$, then G must contain a set S of vertices for which $\rho(S)>\Delta+k$, certifying this inequality. Thus S induces a very dense subgraph in G. As $\|S\| \leq \Delta(G)|S| / 2$, if $|S|$ is even then $\rho(S) \leq \Delta(G)$; so $|S|$ is odd and $\rho(S) \leq \Delta(G)|S| /(|S|-1)=\Delta(G)+\Delta(G) /(|S|-1)$. We say S is small in the sense that its size depends only on Δ and not on the number of vertices of G. In particular $|S| \leq \Delta(G)$. Conjecture 2 gives a similar statement for $k=0$, but the corresponding set S need not be small.

We can therefore think of Conjecture 1 as providing structural information about multigraphs for which $\chi^{\prime}(G)>\Delta+1$, namely, that they must contain small sets S that are very dense. Our aim in this note is to prove a result of this form. Unfortunately we cannot make such a conclusion about all G with $\chi^{\prime}(G)>\Delta+1$, but we show that when k is bounded below by a logarithmic function of Δ then a structural result of this type for multigraphs G satisfying $\chi^{\prime}(G)>\Delta+k$ is possible.

Conjecture 1 has inspired a significant body of work, with contributions from many researchers, see for example [16] or [6] for an overview. Here we mention just the results that directly relate to this note. The best known approximate version is as follows, due to Scheide [11] (independently proved by Chen, Yu and Zang [1], see also [12] and [2]), who proved that the conjecture is true when $\lceil\rho(G)\rceil \geq \Delta+\sqrt{\frac{\Delta-1}{2}}$.

Theorem 3. For every multigraph G

$$
\chi^{\prime}(G) \leq \max \left\{\Delta(G)+\sqrt{\frac{\Delta(G)-1}{2}},\lceil\rho(G)\rceil\right\}
$$

Since $\lceil\rho(S)\rceil>\Delta+\sqrt{\frac{\Delta-1}{2}}$ implies $|S|<\sqrt{\frac{2 \Delta^{2}}{\Delta-1}}+1$, the following corollary about multigraphs without small dense subsets is implied by Theorem 3.
Corollary 4. Let G be a multigraph with maximum degree Δ. If $\lceil\rho(S)\rceil \leq \Delta+\sqrt{\frac{\Delta-1}{2}}$ for every $S \subseteq V(G)$ with $|S|<\sqrt{\frac{2 \Delta^{2}}{\Delta-1}}+1$ then $\chi^{\prime}(G) \leq \Delta+\sqrt{\frac{\Delta-1}{2}}$.

The main theorem of this note states that if the density of small vertex subsets S is restricted somewhat further then a substantially better upper bound can be given for $\chi^{\prime}(G)$, in which the quantity $\sqrt{\frac{\Delta-1}{2}}$ in the conclusion of Corollary 4 is replaced by a logarithmic function of Δ. It can also be viewed as a weakened version of the statement of Conjecture 2 .

Theorem 5. Let G be a multigraph with maximum degree Δ, and let ε be given where $0<\varepsilon<1$. Let $k=\left\lfloor\log _{1+\varepsilon} \Delta\right\rfloor$. If $\rho(S) \leq(1-\varepsilon)(\Delta+k)$ for every $S \subseteq V(G)$ with $|S|<\Delta / k+1$ then $\chi^{\prime}(G) \leq \Delta+k$.

For example, this implies that $\chi^{\prime}(G)<\Delta+101 \log \Delta$ unless G contains a set S of vertices with $|S|<\frac{\Delta}{100 \log \Delta}$ with density parameter $\rho(S)>0.99(\Delta+100 \log \Delta)$.

Our proof uses the technique of Tashkinov trees, developed by Tashkinov in [17]. In the next section we give a brief introduction to this technique together with the main tools we use, including our main technical lemma, Lemma 8 . The proof of Theorem 5 appears in Section 3.

2. Tools

The method of Tashkinov trees, due to Tashkinov [17], is a sophisticated generalization of the method of alternating paths. It is based on an earlier approach from [8]. See [16] for a comprehensive account of this technique.

Let G be a multigraph with $\chi^{\prime}(G) \geq \Delta+2$, and let ϕ be a partial edge coloring of G that uses at most $\chi^{\prime}-1$ colors. We say ϕ is a t-coloring if the codomain of ϕ is $\{1, \ldots, t\}$. We normally assume ϕ is maximal, that is, the maximum possible number of edges of G are colored by ϕ. For a vertex v of G, color α is said to be missing at v if no edge incident to v is colored α by ϕ. Let $T=\left(p_{0}, e_{0}, p_{1}, \ldots, e_{n}-1, p_{n}\right)$ be a sequence of distinct vertices p_{i} and edges e_{i} of G, such that the vertices of each e_{i} are p_{i+1} and p_{r} for some $r \in\{0, \ldots, i\}$. Observe that the vertices and edges of T form a tree. We say that T is a Tashkinov tree with respect to ϕ if e_{0} is uncolored, and for all $i>0$, the color $\phi\left(e_{i}\right)$ is missing at p_{j} for some $j<i$. Thus T is a Tashkinov tree if its first edge is uncolored, and each subsequent edge is colored with a color that is missing at some previous vertex. The key property of Tashkinov trees is captured in the following theorem, due to Tashkinov [17].

https://daneshyari.com/en/article/4646972

Download Persian Version:

https://daneshyari.com/article/4646972

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: pehaxell@uwaterloo.ca (P.E. Haxell), kierstead@asu.edu (H.A. Kierstead).

