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a b s t r a c t

One consequence of a long-standing conjecture of Goldberg and Seymour about the
chromatic index of multigraphs would be the following statement. Suppose G is a
multigraph with maximum degree ∆, such that no vertex subset S of odd size at most ∆
inducesmore than (∆+1)(|S|−1)/2 edges. Then G has an edge coloringwith∆+1 colors.
Here we prove a weakened version of this statement.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this note we study edge colorings of (loopless) multigraphs. We use the standard notation χ ′(G) to denote the
chromatic index of the multigraph G, that is, the smallest number of matchings needed to partition the edge set of G. It
is clear that the maximum degree ∆(G) is a lower bound for χ ′(G) for every graph G. The classical upper bounds for χ ′(G)
are χ ′(G) ≤ 3∆(G)/2 (Shannon’s Theorem [15]) and χ ′(G) ≤ ∆(G) + µ(G) (Vizing’s Theorem [18]), where µ(G) denotes
the maximum edge multiplicity of G.

For a multigraph G, a subset S ⊆ V (G), and a subgraph H ⊆ G, we denote by G[S] the subgraph induced by S, by ∥H∥ the
number of edges in H , and by |H| the number of vertices in H . We also set G[H] = G[V (H)] and ∥S∥ = ∥G[S]∥. Let ρ(S) be
the quantity ∥S∥

⌊|S|/2⌋ . The parameter ρ(G) is defined by

ρ(G) = max{ρ(S) : S ⊆ V (G)}.

Then ⌈ρ(G)⌉ is a lower bound on χ ′(G), since for a set S onwhich ρ(G) is attained, eachmatching in G[S] has size at most
⌊|S|/2⌋ and therefore at least ⌈

∥S∥
⌊|S|/2⌋⌉ colors are needed to color the edges of G[S]. On the other hand, when ρ(G) ≥ ∆(G)

the chromatic index can also be bounded above in terms of ⌈ρ(G)⌉. Kahn [7] gave the bound χ ′(G) ≤ (1 + o(1))⌈ρ(G)⌉,
which was recently improved by Plantholt [10] to

χ ′(G) ≤


1 +

log3/2⌈ρ(G)⌉
⌈ρ(G)⌉


⌈ρ(G)⌉.

The focus of this paper is the long-standing conjecture due to Goldberg [3] (see also [4]) and independently Seymour [14]
which states that the chromatic index of G should be essentially determined by either ρ(G) or∆(G).
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Conjecture 1. For every multigraph G

χ ′(G) ≤ max{∆(G)+ 1, ⌈ρ(G)⌉}.

Goldberg [4] also proposed the following sharp version for multigraphs with ρ(G) ≤ ∆(G)− 1.

Conjecture 2. For every multigraph G, if ρ(G) ≤ ∆(G)− 1 then χ ′(G) = ∆(G).

Conjecture 1 implies that if χ ′(G) > ∆ + k, k ≥ 1, then G must contain a set S of vertices for which ρ(S) > ∆ + k,
certifying this inequality. Thus S induces a very dense subgraph in G. As ∥S∥ ≤ ∆(G)|S|/2, if |S| is even then ρ(S) ≤ ∆(G);
so |S| is odd and ρ(S) ≤ ∆(G)|S|/(|S| − 1) = ∆(G) + ∆(G)/(|S| − 1). We say S is small in the sense that its size depends
only on∆ and not on the number of vertices of G. In particular |S| ≤ ∆(G). Conjecture 2 gives a similar statement for k = 0,
but the corresponding set S need not be small.

We can therefore think of Conjecture 1 as providing structural information about multigraphs for which χ ′(G) > ∆+ 1,
namely, that they must contain small sets S that are very dense. Our aim in this note is to prove a result of this form.
Unfortunately we cannot make such a conclusion about all G with χ ′(G) > ∆ + 1, but we show that when k is bounded
below by a logarithmic function of ∆ then a structural result of this type for multigraphs G satisfying χ ′(G) > ∆ + k is
possible.

Conjecture 1 has inspired a significant body of work, with contributions from many researchers, see for example [16]
or [6] for an overview. Herewemention just the results that directly relate to this note. The best known approximate version
is as follows, due to Scheide [11] (independently proved by Chen, Yu and Zang [1], see also [12] and [2]), who proved that

the conjecture is true when ⌈ρ(G)⌉ ≥ ∆+


∆−1
2 .

Theorem 3. For every multigraph G

χ ′(G) ≤ max


∆(G)+


∆(G)− 1

2
, ⌈ρ(G)⌉


.

Since ⌈ρ(S)⌉ > ∆ +


∆−1
2 implies |S| <


2∆2

∆−1 + 1, the following corollary about multigraphs without small dense
subsets is implied by Theorem 3.

Corollary 4. Let G be a multigraph with maximum degree∆. If ⌈ρ(S)⌉ ≤ ∆+


∆−1
2 for every S ⊆ V (G)with |S| <


2∆2

∆−1 +1

then χ ′(G) ≤ ∆+


∆−1
2 .

The main theorem of this note states that if the density of small vertex subsets S is restricted somewhat further then

a substantially better upper bound can be given for χ ′(G), in which the quantity


∆−1
2 in the conclusion of Corollary 4 is

replaced by a logarithmic function of∆. It can also be viewed as a weakened version of the statement of Conjecture 2.

Theorem 5. Let G be a multigraph with maximum degree ∆, and let ε be given where 0 < ε < 1. Let k = ⌊log1+ε ∆⌋. If
ρ(S) ≤ (1 − ε)(∆+ k) for every S ⊆ V (G) with |S| < ∆/k + 1 then χ ′(G) ≤ ∆+ k.

For example, this implies thatχ ′(G) < ∆+101 log∆ unless G contains a set S of vertices with |S| < ∆

100 log∆ with density
parameter ρ(S) > 0.99(∆+ 100 log∆).

Our proof uses the technique of Tashkinov trees, developed by Tashkinov in [17]. In the next section we give a brief
introduction to this technique together with the main tools we use, including our main technical lemma, Lemma 8. The
proof of Theorem 5 appears in Section 3.

2. Tools

The method of Tashkinov trees, due to Tashkinov [17], is a sophisticated generalization of the method of alternating
paths. It is based on an earlier approach from [8]. See [16] for a comprehensive account of this technique.

Let G be amultigraphwith χ ′(G) ≥ ∆+2, and let φ be a partial edge coloring of G that uses at most χ ′
−1 colors. We say

φ is a t-coloring if the codomain of φ is {1, . . . , t}. We normally assume φ ismaximal, that is, themaximum possible number
of edges of G are colored by φ. For a vertex v of G, color α is said to be missing at v if no edge incident to v is colored α by
φ. Let T = (p0, e0, p1, . . . , en − 1, pn) be a sequence of distinct vertices pi and edges ei of G, such that the vertices of each
ei are pi+1 and pr for some r ∈ {0, . . . , i}. Observe that the vertices and edges of T form a tree. We say that T is a Tashkinov
treewith respect to φ if e0 is uncolored, and for all i > 0, the color φ(ei) is missing at pj for some j < i. Thus T is a Tashkinov
tree if its first edge is uncolored, and each subsequent edge is colored with a color that is missing at some previous vertex.
The key property of Tashkinov trees is captured in the following theorem, due to Tashkinov [17].
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