Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Edge coloring multigraphs without small dense subsets

P.E. Haxell^{a,*}, H.A. Kierstead^b

^a Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
^b School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA

ARTICLE INFO

Article history: Received 30 July 2014 Received in revised form 9 June 2015 Accepted 10 June 2015 Available online 9 July 2015

Keywords: Multigraphs Edge coloring Goldberg's conjecture

ABSTRACT

One consequence of a long-standing conjecture of Goldberg and Seymour about the chromatic index of multigraphs would be the following statement. Suppose *G* is a multigraph with maximum degree Δ , such that no vertex subset *S* of odd size at most Δ induces more than $(\Delta + 1)(|S| - 1)/2$ edges. Then *G* has an edge coloring with $\Delta + 1$ colors. Here we prove a weakened version of this statement.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this note we study edge colorings of (loopless) multigraphs. We use the standard notation $\chi'(G)$ to denote the chromatic index of the multigraph *G*, that is, the smallest number of matchings needed to partition the edge set of *G*. It is clear that the maximum degree $\Delta(G)$ is a lower bound for $\chi'(G)$ for every graph *G*. The classical upper bounds for $\chi'(G)$ are $\chi'(G) \leq 3\Delta(G)/2$ (Shannon's Theorem [15]) and $\chi'(G) \leq \Delta(G) + \mu(G)$ (Vizing's Theorem [18]), where $\mu(G)$ denotes the maximum edge multiplicity of *G*.

For a multigraph *G*, a subset $S \subseteq V(G)$, and a subgraph $H \subseteq G$, we denote by G[S] the subgraph induced by *S*, by ||H|| the number of edges in *H*, and by |H| the number of vertices in *H*. We also set G[H] = G[V(H)] and ||S|| = ||G[S]||. Let $\rho(S)$ be the quantity $\frac{||S||}{||S|/2|}$. The parameter $\rho(G)$ is defined by

 $\rho(G) = \max\{\rho(S) : S \subseteq V(G)\}.$

Then $\lceil \rho(G) \rceil$ is a lower bound on $\chi'(G)$, since for a set *S* on which $\rho(G)$ is attained, each matching in *G*[*S*] has size at most $\lfloor |S|/2 \rfloor$ and therefore at least $\lceil \frac{\|S\|}{\lfloor |S|/2 \rfloor} \rceil$ colors are needed to color the edges of *G*[*S*]. On the other hand, when $\rho(G) \ge \Delta(G)$ the chromatic index can also be bounded above in terms of $\lceil \rho(G) \rceil$. Kahn [7] gave the bound $\chi'(G) \le (1 + o(1)) \lceil \rho(G) \rceil$, which was recently improved by Plantholt [10] to

$$\chi'(G) \leq \left(1 + \frac{\log_{3/2} \lceil \rho(G) \rceil}{\lceil \rho(G) \rceil}\right) \lceil \rho(G) \rceil.$$

The focus of this paper is the long-standing conjecture due to Goldberg [3] (see also [4]) and independently Seymour [14] which states that the chromatic index of *G* should be essentially determined by either $\rho(G)$ or $\Delta(G)$.

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2015.06.022 0012-365X/© 2015 Elsevier B.V. All rights reserved.

E-mail addresses: pehaxell@uwaterloo.ca (P.E. Haxell), kierstead@asu.edu (H.A. Kierstead).

Conjecture 1. For every multigraph G

 $\chi'(G) \le \max\{\Delta(G) + 1, \lceil \rho(G) \rceil\}.$

Goldberg [4] also proposed the following sharp version for multigraphs with $\rho(G) \leq \Delta(G) - 1$.

Conjecture 2. For every multigraph *G*, if $\rho(G) \leq \Delta(G) - 1$ then $\chi'(G) = \Delta(G)$.

Conjecture 1 implies that if $\chi'(G) > \Delta + k$, $k \ge 1$, then *G* must contain a set *S* of vertices for which $\rho(S) > \Delta + k$, certifying this inequality. Thus *S* induces a very dense subgraph in *G*. As $||S|| \le \Delta(G)|S|/2$, if |S| is even then $\rho(S) \le \Delta(G)$; so |S| is odd and $\rho(S) \le \Delta(G)|S|/(|S| - 1) = \Delta(G) + \Delta(G)/(|S| - 1)$. We say *S* is *small* in the sense that its size depends only on Δ and not on the number of vertices of *G*. In particular $|S| \le \Delta(G)$. Conjecture 2 gives a similar statement for k = 0, but the corresponding set *S* need not be small.

We can therefore think of Conjecture 1 as providing structural information about multigraphs for which $\chi'(G) > \Delta + 1$, namely, that they must contain small sets *S* that are very dense. Our aim in this note is to prove a result of this form. Unfortunately we cannot make such a conclusion about all *G* with $\chi'(G) > \Delta + 1$, but we show that when *k* is bounded below by a logarithmic function of Δ then a structural result of this type for multigraphs *G* satisfying $\chi'(G) > \Delta + k$ is possible.

Conjecture 1 has inspired a significant body of work, with contributions from many researchers, see for example [16] or [6] for an overview. Here we mention just the results that directly relate to this note. The best known approximate version is as follows, due to Scheide [11] (independently proved by Chen, Yu and Zang [1], see also [12] and [2]), who proved that the conjecture is true when $\lceil \rho(G) \rceil \ge \Delta + \sqrt{\frac{\Delta-1}{2}}$.

Theorem 3. For every multigraph G

$$\chi'(G) \le \max\left\{\Delta(G) + \sqrt{\frac{\Delta(G) - 1}{2}}, \lceil \rho(G) \rceil\right\}.$$

Since $\lceil \rho(S) \rceil > \Delta + \sqrt{\frac{\Delta-1}{2}}$ implies $|S| < \sqrt{\frac{2\Delta^2}{\Delta-1}} + 1$, the following corollary about multigraphs without small dense subsets is implied by Theorem 3.

Corollary 4. Let G be a multigraph with maximum degree Δ . If $\lceil \rho(S) \rceil \leq \Delta + \sqrt{\frac{\Delta - 1}{2}}$ for every $S \subseteq V(G)$ with $|S| < \sqrt{\frac{2\Delta^2}{\Delta - 1}} + 1$ then $\chi'(G) \leq \Delta + \sqrt{\frac{\Delta - 1}{2}}$.

The main theorem of this note states that if the density of small vertex subsets *S* is restricted somewhat further then a substantially better upper bound can be given for $\chi'(G)$, in which the quantity $\sqrt{\frac{\Delta-1}{2}}$ in the conclusion of Corollary 4 is replaced by a logarithmic function of Δ . It can also be viewed as a weakened version of the statement of Conjecture 2.

Theorem 5. Let *G* be a multigraph with maximum degree Δ , and let ε be given where $0 < \varepsilon < 1$. Let $k = \lfloor \log_{1+\varepsilon} \Delta \rfloor$. If $\rho(S) \leq (1-\varepsilon)(\Delta+k)$ for every $S \subseteq V(G)$ with $|S| < \Delta/k + 1$ then $\chi'(G) \leq \Delta + k$.

For example, this implies that $\chi'(G) < \Delta + 101 \log \Delta$ unless *G* contains a set *S* of vertices with $|S| < \frac{\Delta}{100 \log \Delta}$ with density parameter $\rho(S) > 0.99(\Delta + 100 \log \Delta)$.

Our proof uses the technique of Tashkinov trees, developed by Tashkinov in [17]. In the next section we give a brief introduction to this technique together with the main tools we use, including our main technical lemma, Lemma 8. The proof of Theorem 5 appears in Section 3.

2. Tools

The method of Tashkinov trees, due to Tashkinov [17], is a sophisticated generalization of the method of alternating paths. It is based on an earlier approach from [8]. See [16] for a comprehensive account of this technique.

Let *G* be a multigraph with $\chi'(G) \ge \Delta + 2$, and let ϕ be a partial edge coloring of *G* that uses at most $\chi' - 1$ colors. We say ϕ is a *t*-coloring if the codomain of ϕ is $\{1, \ldots, t\}$. We normally assume ϕ is maximal, that is, the maximum possible number of edges of *G* are colored by ϕ . For a vertex v of *G*, color α is said to be missing at v if no edge incident to v is colored α by ϕ . Let $T = (p_0, e_0, p_1, \ldots, e_n - 1, p_n)$ be a sequence of distinct vertices p_i and edges e_i of *G*, such that the vertices of each e_i are p_{i+1} and p_r for some $r \in \{0, \ldots, i\}$. Observe that the vertices and edges of *T* form a tree. We say that *T* is a Tashkinov tree with respect to ϕ if e_0 is uncolored, and for all i > 0, the color $\phi(e_i)$ is missing at p_j for some j < i. Thus *T* is a Tashkinov tree if its first edge is uncolored, and each subsequent edge is colored with a color that is missing at some previous vertex. The key property of Tashkinov trees is captured in the following theorem, due to Tashkinov [17].

Download English Version:

https://daneshyari.com/en/article/4646972

Download Persian Version:

https://daneshyari.com/article/4646972

Daneshyari.com