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1. Introduction

In this note we study edge colorings of (loopless) multigraphs. We use the standard notation x’(G) to denote the
chromatic index of the multigraph G, that is, the smallest number of matchings needed to partition the edge set of G. It
is clear that the maximum degree A(G) is a lower bound for x’(G) for every graph G. The classical upper bounds for x’(G)
are x'(G) < 3A(G)/2 (Shannon’s Theorem [15]) and x'(G) < A(G) 4+ u(G) (Vizing's Theorem [18]), where w(G) denotes
the maximum edge multiplicity of G.

For a multigraph G, a subset S C V(G), and a subgraph H C G, we denote by G[S] the subgraph induced by S, by ||H|| the
number of edges in H, and by |H| the number of vertices in H. We also set G[H] = G[V(H)] and ||S|| = ||G[S]||. Let p(S) be

the quantity ngls /”2 T The parameter p(G) is defined by

p(G) = max{p(S) : S € V(G)}.

Then [(G)] is alower bound on x’(G), since for a set S on which p(G) is attained, each matching in G[S] has size at most
LIS|/2] and therefore at least f%} colors are needed to color the edges of G[S]. On the other hand, when p(G) > A(G)
the chromatic index can also be bounded above in terms of [p(G)]. Kahn [7] gave the bound x'(G) < (1 4+ o(1))[p(G)],

which was recently improved by Plantholt [10] to
logs»[0(G)]
[p(G)]

The focus of this paper is the long-standing conjecture due to Goldberg [3] (see also [4]) and independently Seymour [ 14]
which states that the chromatic index of G should be essentially determined by either p(G) or A(G).

x'(G) < (1 + ) [p(G)].
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Conjecture 1. For every multigraph G
x'(6) < max{A(G) + 1, [p(G)1}.

Goldberg [4] also proposed the following sharp version for multigraphs with p(G) < A(G) — 1.

Conjecture 2. For every multigraph G, if p(G) < A(G) — 1then x'(G) = A(G).

Conjecture 1 implies that if x'(G) > A + k, k > 1, then G must contain a set S of vertices for which p(S) > A + k,
certifying this inequality. Thus S induces a very dense subgraph in G. As ||S|| < A(G)|S|/2, if |S| is even then p(S) < A(G);
so |S|is odd and p(S) < A(G)IS|/(IS| — 1) = A(G) 4+ A(G)/(|S| — 1). We say S is small in the sense that its size depends
only on A and not on the number of vertices of G. In particular |S| < A(G). Conjecture 2 gives a similar statement for k = 0,
but the corresponding set S need not be small.

We can therefore think of Conjecture 1 as providing structural information about multigraphs for which x’(G) > A +1,
namely, that they must contain small sets S that are very dense. Our aim in this note is to prove a result of this form.
Unfortunately we cannot make such a conclusion about all G with x'(G) > A + 1, but we show that when k is bounded
below by a logarithmic function of A then a structural result of this type for multigraphs G satisfying x'(G) > A + ks
possible.

Conjecture 1 has inspired a significant body of work, with contributions from many researchers, see for example [16]
or [6] for an overview. Here we mention just the results that directly relate to this note. The best known approximate version
is as follows, due to Scheide [11] (independently proved by Chen, Yu and Zang [1], see also [12] and [2]), who proved that

the conjecture is true when [p(G)] > A + ,/ AT”.

Theorem 3. For every multigraph G

, [AG) —1
x'(G) < max {A(G) + — fp(Gﬂ} .

Since [p(S)] > A+ ,/ % implies |S| < %21 + 1, the following corollary about multigraphs without small dense
subsets is implied by Theorem 3.

Corollary 4. Let G be a multigraph with maximum degree A.If [p(S)] < A+ /252 forevery S € V(G) with |S| < %_21 +1

then x'(G) < A+ /4L,

The main theorem of this note states that if the density of small vertex subsets S is restricted somewhat further then
a substantially better upper bound can be given for x’(G), in which the quantity ./ % in the conclusion of Corollary 4 is
replaced by a logarithmic function of A. It can also be viewed as a weakened version of the statement of Conjecture 2.

Theorem 5. Let G be a multigraph with maximum degree A, and let & be given where 0 < ¢ < 1. Let k = [logy,, A]. If
p(S) < (1 —2¢)(A+k)forevery S C V(G) with |S| < A/k + 1then x'(G) < A+ k.

For example, this implies that x'(G) < A+ 101log A unless G contains a set S of vertices with |S| < —%— with density

1001log A
parameter p(S) > 0.99(A + 100 log A).
Our proof uses the technique of Tashkinov trees, developed by Tashkinov in [17]. In the next section we give a brief
introduction to this technique together with the main tools we use, including our main technical lemma, Lemma 8. The
proof of Theorem 5 appears in Section 3.

2. Tools

The method of Tashkinov trees, due to Tashkinov [17], is a sophisticated generalization of the method of alternating
paths. It is based on an earlier approach from [8]. See [16] for a comprehensive account of this technique.

Let G be a multigraph with x’(G) > A+ 2, and let ¢ be a partial edge coloring of G that uses at most x’ — 1 colors. We say
¢ is a t-coloring if the codomainof ¢ is {1, . . ., t}. We normally assume ¢ is maximal, that is, the maximum possible number
of edges of G are colored by ¢. For a vertex v of G, color « is said to be missing at v if no edge incident to v is colored « by
¢.Let T = (po, €9, P1, ..., €n — 1, py) be a sequence of distinct vertices p; and edges e; of G, such that the vertices of each
e; are p;+1 and p, for some r € {0, ..., i}. Observe that the vertices and edges of T form a tree. We say that T is a Tashkinov
tree with respect to ¢ if eg is uncolored, and for alli > 0, the color ¢ (e;) is missing at p; for some j < i. Thus T is a Tashkinov
tree if its first edge is uncolored, and each subsequent edge is colored with a color that is missing at some previous vertex.
The key property of Tashkinov trees is captured in the following theorem, due to Tashkinov [17].
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