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a b s t r a c t

We consider the following generalization of graph packing. Let G1 = (V1, E1) and G2 =

(V2, E2) be graphs of order n and G3 = (V1 ∪ V2, E3) a bipartite graph. A bijection f from V1
onto V2 is a list packing of the triple (G1,G2,G3) if uv ∈ E1 implies f (u)f (v) ∉ E2 and for
all v ∈ V1, vf (v) ∉ E3. We extend the classical results of Sauer and Spencer and Bollobás
and Eldridge on packing of graphs with small sizes or maximum degrees to the setting of
list packing. In particular, we extend the well-known Bollobás–Eldridge Theorem, proving
that if ∆(G1) ≤ n − 2, ∆(G2) ≤ n − 2, ∆(G3) ≤ n − 1, and |E1| + |E2| + |E3| ≤ 2n − 3,
then either (G1,G2,G3) packs or is one of 7 possible exceptions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The notion of graph packing is a well-known concept in graph theory and combinatorics. Two graphs on n vertices are
said to pack if there is an edge-disjoint placement of the graphs onto the same set of vertices. In 1978, two seminal papers, [6]
and [1], on extremal problems on graph packing appeared in the same journal. In particular, Sauer and Spencer [6] proved
sufficient conditions for packing two graphs with bounded product of maximum degrees.

Theorem 1 ([6]). Let G1 and G2 be two graphs of order n. If 2∆(G1)∆(G2) < n, then G1 and G2 pack.

This result is sharp and later Kaul and Kostochka [5] characterized all graphs for which Theorem 1 is sharp.

Theorem 2 ([5]). Let G1 and G2 be two graphs of order n and 2∆(G1)∆(G2) ≤ n. Then G1 and G2 do not pack if and only if one
of G1 and G2 is a perfect matching and the other is either K n

2 , n2
with n

2 odd or contains K n
2 +1.

Bollobás and Eldridge [1] and, independently, Sauer and Spencer gave sufficient conditions for packing two graphs with
given total number of edges.

Theorem 3 ([1,6]). Let G1 and G2 be two graphs of order n. If |E(G1)| + |E(G2)| ≤
3
2n − 2, then G1 and G2 pack.

This result is best possible, since G1 = K1,n−1 and G2 =
n
2K2 do not pack. Bollobás and Eldridge [1] proved the stronger

result that the bound of Theorem 3 can be significantly strengthened when ∆(G1) < n − 1 and ∆(G2) < n − 1.
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Fig. 1. Bad pairs in Theorems 4 and 6.

Theorem 4 ([1]). Let G1 and G2 be two graphs of order n. If ∆(G1), ∆(G2) ≤ n − 2, |E(G1)| + |E(G2)| ≤ 2n − 3, and {G1,G2}

is not one of the following pairs: {2K2, K1 ∪ K3}, {K 2 ∪ K3, K2 ∪ K3}, {3K2, K 2 ∪ K4}, {K 3 ∪ K3, 2K3}, {2K2 ∪ K3, K 3 ∪ K4}, {K 4 ∪

K4, K2 ∪ 2K3}, {K 5 ∪ K4, 3K3} (Fig. 1), then G1 and G2 pack.

This result is also sharp, since the graphs G1 = Cn and G2 = K1,n−2 ∪ K1 satisfy the maximum degree conditions, have
2n − 2 edges, and do not pack. There are other extremal examples.

Variants of the packing problem have been studied and, in particular, restrictions of permissible packings arise both
within proofs and are posed as independent questions. The notion of a bipartite packingwas introduced by Catlin [2] andwas
later studied by Hajnal and Szegedy [4]. This variation of traditional packing involves two bipartite graphs G1 = (X1∪Y1, E1)
and G2 = (X2 ∪ Y2, E2) where permissible packings send X1 onto X2 and Y1 onto Y2. The problem of fixed-point-free
embeddings, studied by Schuster in 1978, considers a different restriction to the original packing problem [7]. In this case,
G1 = G is packedwithG2 = G under the additional restraint that no vertex ofG1 ismapped to its copy inG2. In [9], Schuster’s
result is used to prove a necessary condition for packing two graphs with given maximum and average degrees.

In this paper, we introduce the language of list packing in order to model such problems. A list packing of the graph triple
(G1,G2,G3) with G1 = (V1, E1),G2 = (V2, E2), and G3 = (V1 ∪ V2, E3) is a bijection f : V1 → V2 such that uv ∈ E1 implies
f (u)f (v) ∉ E2 and for each u ∈ V1, uf (u) ∉ E3. Note that both G1 and G2 are graphs on n vertices so that G3 has 2n vertices,
and one can think of the edge set E3 as a list of restrictions that must be avoided when packing G1 and G2.

This notion is closely related to Vizing’s concept of list coloring [8]. Suppose we wish to color a graph G with the colors
{1, . . . , k}. A list assignment L is a function on the vertex set V (G) that returns a set of colors L(v) ⊆ {1, . . . , k} permissible
for v. A list coloring, more specifically an L-coloring, is a proper coloring f of G such that f (v) ∈ L(v) for all v ∈ V (G). The
problem of list coloring G can be stated within the framework of list packing. A proper L-coloring of a graph G is equivalent
to a list packing where G1 = G along with an appropriate number of isolated vertices, G2 is a disjoint union of Kn’s each
representing a color, and E3 consists of all edges going between a vertex v ∈ V1 and the copies of Kn corresponding to colors
not in L(v). Note the list L(v) denotes permissible colors in a list coloring while N3(v) specifies forbidden vertices in a list
packing.

Similarly, the variations of packing discussed above can bemodeled using this framework. A bipartite packing is a packing
of the triple (G1,G2,G3) where E3 consists of all edges between Xi and Y3−i for i = 1, 2. A fixed-point-free embedding is
a packing of the triple (G,G,G3) where E3 = {(v, v) : v ∈ V (G)}. Further, several important theorems on the ordinary
packing can be stated in terms of list packing. The results of this paper prove natural generalizations of Theorems 1–4.
In particular, we extend Theorems 1 and 2 as follows.

Theorem 5. Let G = (G1,G2,G3) be a graph triple with |V1| = |V2| = n. If

∆(G1)∆(G2) + ∆(G3) ≤ n/2, (1)

then G does not pack if and only if ∆(G3) = 0 and one of G1 or G2 is a perfect matching and the other is K n
2 , n2

with n
2 odd or

contains K n
2 +1. Consequently, if ∆(G1)∆(G2) + ∆(G3) < n/2, then G packs.

The main result of this paper is the following list version of Theorem 4.

Theorem 6. Let G = (G1,G2,G3) be a graph triple with |V1| = |V2| = n. If ∆(G1), ∆(G2) ≤ n − 2, ∆(G3) ≤ n − 1,
|E1| + |E2| + |E3| ≤ 2n − 3 and the pair {G1,G2} is none of the 7 pairs in Fig. 1, then G packs.

Theorem 6 is sharp and has more sharpness examples than Theorem 4. First, the condition ∆(G3) ≤ n − 1 cannot be
removed, since a vertex in V1 adjacent to all vertices in V2 cannot be placed at all (Fig. 2(a)). The restriction on |E1|+|E2|+|E3|
is also sharp, as there are several examples of graphs with |E3| > 0 and edge sum equal to 2n − 2 that do not pack.
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