A list version of graph packing

Ervin Győri ${ }^{\text {a,b }}$, Alexandr Kostochka ${ }^{\text {d,c }, ~ A n d r e w ~ M c C o n v e y ~}{ }^{\text {d,*, }}$, Derrek Yager ${ }^{\text {d }}$
${ }^{\text {a }}$ Alfréd Rényi Institute of Mathematics, Budapest, Hungary
${ }^{\mathrm{b}}$ Department of Mathematics, Central European University, Budapest, Hungary
${ }^{\text {c }}$ Sobolev Institute of Mathematics, Novosibirsk, Russia
${ }^{\text {d }}$ University of Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, IL 61801, USA

ARTICLE INFO

Article history:

Received 1 January 2015
Received in revised form 3 March 2016
Accepted 4 March 2016
Available online 27 April 2016

Keywords:

Graph packing
Maximum degree
Edge sum
List coloring

Abstract

We consider the following generalization of graph packing. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=$ (V_{2}, E_{2}) be graphs of order n and $G_{3}=\left(V_{1} \cup V_{2}, E_{3}\right)$ a bipartite graph. A bijection f from V_{1} onto V_{2} is a list packing of the triple $\left(G_{1}, G_{2}, G_{3}\right)$ if $u v \in E_{1}$ implies $f(u) f(v) \notin E_{2}$ and for all $v \in V_{1}, v f(v) \notin E_{3}$. We extend the classical results of Sauer and Spencer and Bollobás and Eldridge on packing of graphs with small sizes or maximum degrees to the setting of list packing. In particular, we extend the well-known Bollobás-Eldridge Theorem, proving that if $\Delta\left(G_{1}\right) \leq n-2, \Delta\left(G_{2}\right) \leq n-2, \Delta\left(G_{3}\right) \leq n-1$, and $\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right| \leq 2 n-3$, then either (G_{1}, G_{2}, G_{3}) packs or is one of 7 possible exceptions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The notion of graph packing is a well-known concept in graph theory and combinatorics. Two graphs on n vertices are said to pack if there is an edge-disjoint placement of the graphs onto the same set of vertices. In 1978, two seminal papers, [6] and [1], on extremal problems on graph packing appeared in the same journal. In particular, Sauer and Spencer [6] proved sufficient conditions for packing two graphs with bounded product of maximum degrees.

Theorem 1 ([6]). Let G_{1} and G_{2} be two graphs of order n. If $2 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right)<n$, then G_{1} and G_{2} pack.
This result is sharp and later Kaul and Kostochka [5] characterized all graphs for which Theorem 1 is sharp.
Theorem 2 ([5]). Let G_{1} and G_{2} be two graphs of order n and $2 \Delta\left(G_{1}\right) \Delta\left(G_{2}\right) \leq n$. Then G_{1} and G_{2} do not pack if and only if one of G_{1} and G_{2} is a perfect matching and the other is either $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

Bollobás and Eldridge [1] and, independently, Sauer and Spencer gave sufficient conditions for packing two graphs with given total number of edges.

Theorem 3 ([1,6]). Let G_{1} and G_{2} be two graphs of order n. If $\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \leq \frac{3}{2} n-2$, then G_{1} and G_{2} pack.
This result is best possible, since $G_{1}=K_{1, n-1}$ and $G_{2}=\frac{n}{2} K_{2}$ do not pack. Bollobás and Eldridge [1] proved the stronger result that the bound of Theorem 3 can be significantly strengthened when $\Delta\left(G_{1}\right)<n-1$ and $\Delta\left(G_{2}\right)<n-1$.

[^0]

Fig. 1. Bad pairs in Theorems 4 and 6 .

Theorem 4 ([1]). Let G_{1} and G_{2} be two graphs of order n. If $\Delta\left(G_{1}\right), \Delta\left(G_{2}\right) \leq n-2,\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \leq 2 n-3$, and $\left\{G_{1}, G_{2}\right\}$ is not one of the following pairs: $\left\{2 K_{2}, K_{1} \cup K_{3}\right\},\left\{\bar{K}_{2} \cup K_{3}, K_{2} \cup K_{3}\right\},\left\{3 K_{2}, \bar{K}_{2} \cup K_{4}\right\},\left\{\bar{K}_{3} \cup K_{3}, 2 K_{3}\right\},\left\{2 K_{2} \cup K_{3}, \bar{K}_{3} \cup K_{4}\right\},\left\{\bar{K}_{4} \cup\right.$ $\left.K_{4}, K_{2} \cup 2 K_{3}\right\},\left\{\bar{K}_{5} \cup K_{4}, 3 K_{3}\right\}$ (Fig. 1), then G_{1} and G_{2} pack.

This result is also sharp, since the graphs $G_{1}=C_{n}$ and $G_{2}=K_{1, n-2} \cup K_{1}$ satisfy the maximum degree conditions, have $2 n-2$ edges, and do not pack. There are other extremal examples.

Variants of the packing problem have been studied and, in particular, restrictions of permissible packings arise both within proofs and are posed as independent questions. The notion of a bipartite packing was introduced by Catlin [2] and was later studied by Hajnal and Szegedy [4]. This variation of traditional packing involves two bipartite graphs $G_{1}=\left(X_{1} \cup Y_{1}, E_{1}\right)$ and $G_{2}=\left(X_{2} \cup Y_{2}, E_{2}\right)$ where permissible packings send X_{1} onto X_{2} and Y_{1} onto Y_{2}. The problem of fixed-point-free embeddings, studied by Schuster in 1978, considers a different restriction to the original packing problem [7]. In this case, $G_{1}=G$ is packed with $G_{2}=G$ under the additional restraint that no vertex of G_{1} is mapped to its copy in G_{2}. In [9], Schuster's result is used to prove a necessary condition for packing two graphs with given maximum and average degrees.

In this paper, we introduce the language of list packing in order to model such problems. A list packing of the graph triple $\left(G_{1}, G_{2}, G_{3}\right)$ with $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$, and $G_{3}=\left(V_{1} \cup V_{2}, E_{3}\right)$ is a bijection $f: V_{1} \rightarrow V_{2}$ such that $u v \in E_{1}$ implies $f(u) f(v) \notin E_{2}$ and for each $u \in V_{1}, u f(u) \notin E_{3}$. Note that both G_{1} and G_{2} are graphs on n vertices so that G_{3} has $2 n$ vertices, and one can think of the edge set E_{3} as a list of restrictions that must be avoided when packing G_{1} and G_{2}.

This notion is closely related to Vizing's concept of list coloring [8]. Suppose we wish to color a graph G with the colors $\{1, \ldots, k\}$. A list assignment L is a function on the vertex set $V(G)$ that returns a set of colors $L(v) \subseteq\{1, \ldots, k\}$ permissible for v. A list coloring, more specifically an L-coloring, is a proper coloring f of G such that $f(v) \in L(v)$ for all $v \in V(G)$. The problem of list coloring G can be stated within the framework of list packing. A proper L-coloring of a graph G is equivalent to a list packing where $G_{1}=G$ along with an appropriate number of isolated vertices, G_{2} is a disjoint union of K_{n} 's each representing a color, and E_{3} consists of all edges going between a vertex $v \in V_{1}$ and the copies of K_{n} corresponding to colors not in $L(v)$. Note the list $L(v)$ denotes permissible colors in a list coloring while $N_{3}(v)$ specifies forbidden vertices in a list packing.

Similarly, the variations of packing discussed above can be modeled using this framework. A bipartite packing is a packing of the triple $\left(G_{1}, G_{2}, G_{3}\right)$ where E_{3} consists of all edges between X_{i} and Y_{3-i} for $i=1$, 2. A fixed-point-free embedding is a packing of the triple $\left(G, G, G_{3}\right)$ where $E_{3}=\{(v, v): v \in V(G)\}$. Further, several important theorems on the ordinary packing can be stated in terms of list packing. The results of this paper prove natural generalizations of Theorems 1-4. In particular, we extend Theorems 1 and 2 as follows.

Theorem 5. Let $\mathbf{G}=\left(G_{1}, G_{2}, G_{3}\right)$ be a graph triple with $\left|V_{1}\right|=\left|V_{2}\right|=n$. If

$$
\begin{equation*}
\Delta\left(G_{1}\right) \Delta\left(G_{2}\right)+\Delta\left(G_{3}\right) \leq n / 2 \tag{1}
\end{equation*}
$$

then \mathbf{G} does not pack if and only if $\Delta\left(G_{3}\right)=0$ and one of G_{1} or G_{2} is a perfect matching and the other is $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$. Consequently, if $\Delta\left(G_{1}\right) \Delta\left(G_{2}\right)+\Delta\left(G_{3}\right)<n / 2$, then \mathbf{G} packs.

The main result of this paper is the following list version of Theorem 4.
Theorem 6. Let $\mathbf{G}=\left(G_{1}, G_{2}, G_{3}\right)$ be a graph triple with $\left|V_{1}\right|=\left|V_{2}\right|=n$. If $\Delta\left(G_{1}\right), \Delta\left(G_{2}\right) \leq n-2, \Delta\left(G_{3}\right) \leq n-1$, $\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right| \leq 2 n-3$ and the pair $\left\{G_{1}, G_{2}\right\}$ is none of the 7 pairs in Fig. 1, then \mathbf{G} packs.

Theorem 6 is sharp and has more sharpness examples than Theorem 4. First, the condition $\Delta\left(G_{3}\right) \leq n-1$ cannot be removed, since a vertex in V_{1} adjacent to all vertices in V_{2} cannot be placed at all (Fig. 2(a)). The restriction on $\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right|$ is also sharp, as there are several examples of graphs with $\left|E_{3}\right|>0$ and edge sum equal to $2 n-2$ that do not pack.

https://daneshyari.com/en/article/4647001

Download Persian Version:

https://daneshyari.com/article/4647001

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ervin@renyi.hu (E. Győri), kostochk@math.uiuc.edu (A. Kostochka), mcconve2@illinois.edu (A. McConvey), yager2@illinois.edu (D. Yager).

