ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

Threefold triple systems with nonsingular N_2

Peter J. Dukes*, Kseniya Garaschuk

Mathematics and Statistics, University of Victoria, Victoria, Canada

ARTICLE INFO

Article history: Received 27 August 2014 Accepted 29 December 2014 Available online 30 January 2015

Keywords: Incidence matrix Rank Hypergraph Triple system

ABSTRACT

There are various results connecting ranks of incidence matrices of graphs and hypergraphs with their combinatorial structure. Here, we consider the generalized incidence matrix N_2 (defined by inclusion of pairs in edges) for one natural class of hypergraphs: the triple systems with index three. Such systems with nonsingular N_2 (over the rationals) appear to be quite rare, yet they can be constructed with PBD closure. In fact, a range of ranks near $\binom{v}{2}$ is obtained for large orders v.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider hypergraphs with the possibility of repeated edges. Let v and λ be positive integers, and suppose $K \subset \mathbb{Z}_{\geq 2} := \{2, 3, 4, \ldots\}$. A pairwise balanced design $PBD_{\lambda}(v, K)$ is a hypergraph (V, \mathcal{B}) with v vertices, edge sizes belonging to K, and such that

• any two distinct vertices in V appear together in exactly λ edges.

In this context, vertices are also called *points* and edges are normally called *blocks*. The parameter λ is the *index*; often it is taken to be 1 and suppressed from the notation. We remark that K could contain unused block sizes.

There are numerical constraints on v given λ and K. An easy double-counting argument on pairs of points leads to the global condition

$$\lambda v(v-1) \equiv 0 \pmod{\beta(K)},\tag{1.1}$$

where $\beta(K) := \gcd\{k(k-1) : k \in K\}$. Similarly, counting incidences with any specific point leads to the *local condition*

$$\lambda(v-1) \equiv 0 \pmod{\alpha(K)},\tag{1.2}$$

where $\alpha(K) := \gcd\{k-1 : k \in K\}$. Wilson's theory, [9], asserts that (1.1) and (1.2) are sufficient for large v.

In the case $K = \{3\}$, we obtain a $(\lambda$ -fold) triple system or $TS_{\lambda}(v)$. When $\lambda = 1$ we have a Steiner triple system and it is well known that these exist for all $v \equiv 1$, 3 (mod 6). In this article we are especially interested in the case $\lambda = 3$. The divisibility conditions (1.1) and (1.2) simply reduce to v being odd. There are $3v(v-1)/6 = {v \choose 2}$ blocks. For a comprehensive reference on triple systems, the reader is referred to Colbourn and Rosa's book [4].

Given any hypergraph H = (V, E), we may define its *incidence matrix* N = N(H) as the zero–one inclusion matrix of points versus edges. That is, N has rows indexed by V, columns indexed by E, and where, for $X \in V$, $E \in E$,

$$N(x, e) = \begin{cases} 1 & \text{if } x \in e; \\ 0 & \text{otherwise.} \end{cases}$$

E-mail addresses: dukes@uvic.ca (P.J. Dukes), kgarasch@uvic.ca (K. Garaschuk).

^{*} Corresponding author.

Linear algebraic properties of incidence matrices have received a lot of attention. Especially interesting are connections with the underlying combinatorial structure. We give two classical examples. First, in the case of ordinary graphs, in which $E \subseteq {V \choose 2}$, it is known [8] that N has full rank (over $\mathbb R$) if and only if every connected component is non-bipartite. As a different example, the rank of a Steiner triple system over the binary field $\mathbb F_2$ is connected in [5] with its 'projective dimension'. This measures the length of the lattice of largest possible proper subsystems.

Let s be a positive integer. The *higher incidence matrix* N_s has a similar definition, but where rows are indexed by $\binom{V}{s}$ (the s-subsets of vertices), columns are again indexed by blocks, and entries are defined by inclusion. That is, for $S \subseteq V$, |S| = s, and $e \in E$, we have

$$N_s(S, e) = \begin{cases} 1 & \text{if } S \subseteq e; \\ 0 & \text{otherwise.} \end{cases}$$

Higher incidence matrices were used by Ray-Chaudhuri and Wilson in [7] to extend Fisher's inequality to designs of 'higher strength'. In a little more detail, suppose we have a system (V,\mathcal{B}) of v points, blocks of a fixed size k, and every t-subset of points belongs to exactly λ blocks. These are sometimes denoted $S_{\lambda}(t,k,v)$. Suppose further that t is even, say t=2s, and $v\geq k+s$. Then the conclusion is that $|\mathcal{B}|\geq {v\choose s}$, and it comes with a strong structural condition for equality. The matrix N_s plays a key role in the proof. Incidentally, a new result of Keevash in [6] proves that, for large v, the divisibility conditions ${k-i\choose t-i}\mid\lambda{v-i\choose t-i}$ for $i=0,\ldots,t$ (which are the analogs of (1.1)-(1.2)) suffice for the existence of $S_{\lambda}(t,k,v)$. Returning to pairwise balanced designs, higher incidence matrices are of limited use when $\lambda=1$. In this case, the matrix

Returning to pairwise balanced designs, higher incidence matrices are of limited use when $\lambda = 1$. In this case, the matrix N_2 is only slightly interesting; each of its rows has exactly one nonzero entry. The matrix N_k is just, under a reordering of rows, the identity matrix on top of the zero matrix. In between, N_s for 2 < s < k has many zero rows and not much structure.

We would like to consider N_2 for what is perhaps the first natural case: threefold triple systems $TS_3(v)$. For such designs, N_2 is square of order $\binom{v}{2}$. In general, we observe that the property of a design having full rank N_2 is 'PBD-closed'. From this and some small designs, we have the following main result.

Theorem 1.1. There exists a TS₃(v) with N₂ nonsingular over \mathbb{R} for all odd $v \ge 5$ except possibly for $v \in E_{579} := \{v : v \equiv 1 \pmod{2}, v \ge 5, \text{ and } \not\exists \text{ PBD}(v, \{5, 7, 9\})\}.$

It is known (see [1] and the summary table entry at [2], page 252) that

$$E_{579} \subseteq \{11..19, 23, 27..33, 39, 43, 51, 59, 71, 75, 83, 87, 95, 99, 107, 111, 113, 115, 119, 139, 179\},$$

and therefore Theorem 1.1 settles the existence question for all but a finite set of values v.

The next section sets up and completes the proof. Then, we conclude with a short discussion of some related topics, including a brief look at such ranks in characteristic *p*.

2. PBD closure and proof of the main result

To prove Theorem 1.1, we first observe that having square nonsingular N_2 is a 'PBD-closed' property.

Lemma 2.1. Suppose there exists a PBD(v, L) and, for each $u \in L$, there exists a PBD $_{\lambda}(u, K)$ having N_2 square and full rank over \mathbb{F} . Then there exists a PBD $_{\lambda}(v, K)$ having N_2 square and full rank over \mathbb{F} .

Proof. Suppose our PBD(v, L) is (V, A). Construct a PBD $_{\lambda}(v, K)$ with points V and block collection

$$\mathcal{B} = \bigcup_{U \in A} \mathcal{B}[U],\tag{2.1}$$

where $\mathcal{B}[U]$ denotes the blocks of a PBD $_{\lambda}(|U|,K)$ on U having full rank N_2 . (Note (2.1) should be interpreted as a formal sum or 'multiset union'.) It is clear that (V,\mathcal{B}) is a PBD $_{\lambda}(v,K)$. Consider its incidence matrix $N_2(\mathcal{B})$. If columns are ordered respecting some ordering U_1,U_2,\ldots of \mathcal{A} and the union in (2.1), and rows are ordered respecting $\binom{U_1}{2},\binom{U_2}{2},\ldots$, then we obtain a block-diagonal structure

$$N_2(\mathcal{B}) = N_2(\mathcal{B}[U_1]) \oplus N_2(\mathcal{B}[U_1]) \oplus \dots$$

Since each block is nonsingular, so is $N_2(\mathcal{B})$. \square

To clarify, we are working in characteristic zero (rank computed over \mathbb{Q}) throughout the remainder of the section.

Lemma 2.2. For v = 5, 7, 9, there exists a $TS_{\lambda}(v)$ having nonsingular N_2 .

Proof. The unique TS₃(5) is just the complete design $\binom{[5]}{3}$. Accordingly, for this design, we have $N_2N_2^{\top} = 3I + A$, where A is the adjacency matrix of the line graph of K_5 (or complement of the Petersen graph). Since A is known to have eigenvalues $(-2)^5$, 1^4 , 6^1 , it follows that N_2 has full rank. Examples for v = 7, 9 are given below as a list of blocks on $\{0, \ldots, v - 1\}$.

$$\{0, 1, 2\}, \{0, 1, 3\}, \{0, 1, 4\}, \{0, 2, 3\}, \{0, 2, 5\}, \{0, 3, 6\}, \{0, 4, 5\},$$

$$v = 7:$$

$$\{0, 4, 6\}, \{0, 5, 6\}, \{1, 2, 4\}, \{1, 2, 6\}, \{1, 3, 5\}, \{1, 3, 6\}, \{1, 4, 5\},$$

$$\{1, 5, 6\}, \{2, 3, 4\}, \{2, 3, 5\}, \{2, 4, 6\}, \{2, 5, 6\}, \{3, 4, 5\}, \{3, 4, 6\}.$$

Download English Version:

https://daneshyari.com/en/article/4647007

Download Persian Version:

https://daneshyari.com/article/4647007

<u>Daneshyari.com</u>