

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Regular pseudo-oriented maps and hypermaps of low genus

Antonio Breda d'Azevedo, Domenico A. Catalano*, Rui Duarte

Departamento de Matemática, Universidade de Aveiro, Aveiro, Portugal

ARTICLE INFO

Article history: Received 24 May 2013 Received in revised form 7 January 2015 Accepted 8 January 2015 Available online 9 February 2015

Keywords: Pseudo-orientable Maps Hypermaps

ABSTRACT

Pseudo-orientable maps were introduced by Wilson in 1976 to describe non-orientable regular maps for which it is possible to assign an orientation to each vertex in such a way that adjacent vertices have opposite orientations. This property extends naturally to non-orientable and orientable hypermaps. In this paper we classify the regular pseudo-oriented maps and hypermaps of characteristic $\chi \geqslant -3$. With the help of GAP (The GAP group, 2014) and its library of small groups, we extend the classification down to characteristic $\chi = -16$ (Tables 7–19 in the Appendix).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Pseudo-orientable maps were introduced by Wilson [13] in 1976 to describe non-orientable regular maps for which it is possible to assign an orientation to each vertex in such a way that adjacent vertices have opposite orientations. This property was extended and translated into group theoretical language by Breda [1] as a particular case of Θ -marked hypermaps. More precisely, pseudo-orientable hypermaps correspond to conjugacy classes of subgroups of finite index in Δ^0 , the index 2 subgroup of the free product

$$\Delta := \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 = \langle R_0, R_1, R_2 \mid (R_0)^2, (R_1)^2, (R_2)^2 \rangle$$

generated by $A := R_0$, $B := R_0^{R_1}$ and $Z := R_1R_2$. Normal subgroups H of finite index in Δ^0 correspond to *regular* pseudo-orientable hypermaps. These are described by the four-tuple (G; a, b, z) consisting of the finite group $G := \Delta^0/H$ generated by a := HA, b := HB and z := HZ. Topological interpretation of these objects as particular triangulations of compact and connected surfaces allows a classification by Euler characteristic.

The paper is organized as follows. In Section 2 we give some preliminaries going from the combinatorial definition of hypermaps to the algebraic characterization, passing through the topological representation as triangulations of surfaces. In Section 3 we characterize regular pseudo-oriented hypermaps and give some examples. In Section 4 we classify regular pseudo-oriented hypermaps of characteristic $\chi \ge -3$ and in the Appendix we extend this classification down to characteristic $\chi = -16$ with the help of GAP [11] and its library of small groups.

Throughout the paper actions and functions are right-handed, that is, they act on the right.

2. Preliminaries

A (boundary free) hypermap \mathcal{H} is a four-tuple $(F; r_0, r_1, r_2)$, where F is a finite non-empty set of flags, and r_0, r_1, r_2 are fixed-point-free involutions of F generating a transitive (permutation) group $Mon(\mathcal{H}) := \langle r_0, r_1, r_2 \rangle$, called the monodromy

E-mail addresses: breda@ua.pt (A. Breda d'Azevedo), domenico@ua.pt (D.A. Catalano), rduarte@ua.pt (R. Duarte).

^{*} Corresponding author.

Fig. 1. Gluing of triangles.

group of \mathcal{H} . A hypermap $(F; r_0, r_1, r_2)$ satisfying $(r_0 r_2)^2 = 1$ is called a map. Given a hypermap $\mathcal{H} = (F; r_0, r_1, r_2)$ we set

$$M_0 := \langle r_1, r_2 \rangle, \qquad M_1 := \langle r_2, r_0 \rangle \quad \text{and} \quad M_2 := \langle r_0, r_1 \rangle.$$

Then M_0 , M_1 and M_2 are dihedral groups of order $2|r_1r_2|$, $2|r_2r_0|$ and $2|r_0r_1|$, respectively, acting on F as subgroups of $Mon(\mathcal{H})$. The sets of orbits

$$\mathcal{V} = F/M_0$$
, $\mathcal{E} = F/M_1$, $\mathcal{F} = F/M_2$

are called the set of *hypervertices*, the set of *hyperedges* and the set of *hyperfaces* of \mathcal{H} , respectively, while the triple $(|r_1r_2|, |r_2r_0|, |r_0r_1|)$ is called the *type* of \mathcal{H} . In particular, maps have type (k, 2, n) for some $k, n \in \mathbb{N}$.

A morphism ϕ from the hypermap $\widetilde{\mathcal{H}}=(\widetilde{F};\widetilde{r_0},\widetilde{r_1},\widetilde{r_2})$ to the hypermap $\mathcal{H}=(F;r_0,r_1,r_2)$ is a function $\phi:\widetilde{F}\to F$ satisfying $\widetilde{r_i}\,\phi=\phi\,r_i$, for every $i\in\{0,1,2\}$. If there is a morphism from $\widetilde{\mathcal{H}}$ to \mathcal{H} , then we say that $\widetilde{\mathcal{H}}$ covers \mathcal{H} or that $\widetilde{\mathcal{H}}$ is a cover of \mathcal{H} . It follows from the definitions that any morphism is uniquely determined by the image of a flag, and that it is onto. Therefore morphisms are also called coverings and one-to-one coverings are called isomorphisms. If there is an isomorphism ϕ from $\widetilde{\mathcal{H}}$ to \mathcal{H} , then ϕ^{-1} is an isomorphism from \mathcal{H} to $\widetilde{\mathcal{H}}$. In that case, the hypermaps $\widetilde{\mathcal{H}}$ and \mathcal{H} are said to be isomorphic and we write $\widetilde{\mathcal{H}}\cong\mathcal{H}$. An isomorphism from \mathcal{H} to \mathcal{H} is called an automorphism of \mathcal{H} . The set $Aut(\mathcal{H})$ of automorphisms of \mathcal{H} is a (permutation) group (on the set F of flags of \mathcal{H}), called the automorphism group of \mathcal{H} . By definition, $Aut(\mathcal{H})$ is the centralizer of $Mon(\mathcal{H})$ in the symmetric group S_F on the set F of flags of \mathcal{H} . Therefore $Aut(\mathcal{H})$ acts semi-regularly on F (see, for instance, Theorem 4.2A of [4]) and hence

$$|Aut(\mathcal{H})| \leq |F| \leq |Mon(\mathcal{H})|.$$

An equality on one side implies equality on the other side. This happens if and only if the action of $Mon(\mathcal{H})$ on F is regular. In this case \mathcal{H} is called a *regular hypermap*.

Any hypermap $\mathcal{H} = (F; r_0, r_1, r_2)$ gives rise to a triangulation of a closed (compact and connected) surface \mathcal{S} , called the *supporting surface* of \mathcal{H} . Triangles with vertices labelled 0, 1, and 2, correspond to the flags of \mathcal{H} , and the triangles x and xr_i are glued together along the respective edges with vertices labelled j and k, where $\{i, j, k\} = \{0, 1, 2\}$ (see Fig. 1).

The 1-skeleton of the triangulation is an embedded graph ${\mathcal G}$ on ${\mathcal S}$ with vertices labelled 0, 1, and 2 corresponding to hypervertices, hyperedges and hyperfaces of ${\mathcal H}$, respectively. Hence the number of vertices of ${\mathcal G}$ is $|{\mathcal V}|+|{\mathcal E}|+|{\mathcal F}|$. As each edge is incident with two triangles and |F| is the number of triangles, the number of edges of ${\mathcal G}$ is $\frac{3|F|}{2}$. From the Euler formula we conclude that the *characteristic* (of the supporting surface ${\mathcal S}$) of ${\mathcal H}$ is

$$\chi(\mathcal{H}) = |\mathcal{V}| + |\mathcal{E}| + |\mathcal{F}| - \frac{|F|}{2}$$
.

For other representations of hypermaps see [7] or [12].

Let $x\nu_i$ be the size of the orbit of $x \in F$ by the action of the cyclic subgroup $\langle r_j r_k \rangle$ of M_i ($\{i, j, k\} = \{0, 1, 2\}$). Then $|xM_i| = 2(x\nu_i)$, and using Burnside's Lemma we get

$$\chi(\mathcal{H}) = -\frac{1}{2} \sum_{\mathbf{x} \in F} \left(1 - \sum_{i=0}^{2} \frac{1}{\mathbf{x} \nu_i} \right).$$

Whenever $xM_i = yM_i$, $x\nu_i = y\nu_i$, and so we can regard ν_i as a function from F/M_i to \mathbb{N} . The image of xM_i by ν_i is called the *valency* of (the hypervertex, the hyperedge or the hyperface) xM_i (according to i = 0, 1 or 2). A hypermap is called *uniform* if ν_0 , ν_1 and ν_2 are constant. For a uniform hypermap \mathcal{H} of type (k, m, n) we have

$$\chi(\mathcal{H}) = \frac{|F|}{2} \left(\frac{1}{k} + \frac{1}{m} + \frac{1}{n} - 1 \right). \tag{1}$$

We say that $\mathcal{H}=(F;r_0,r_1,r_2)$ is orientable if the supporting surface \mathcal{S} of \mathcal{H} is orientable. Otherwise, we say that \mathcal{H} is non-orientable. By considering the group $Mon^+(\mathcal{H}):=\langle r_1r_2,r_2r_0\rangle$, we have that \mathcal{H} is orientable if and only if $Mon^+(\mathcal{H})\neq Mon(\mathcal{H})$, in which case $Mon^+(\mathcal{H})$ is a normal subgroup of index 2 in $Mon(\mathcal{H})$ and we can give orientations to the triangles of the triangulation of \mathcal{S} induced by \mathcal{H} in such a way that the triangles x and xr_i have opposite orientations, i=0,1,2.

By definition, the monodromy group $Mon(\mathcal{H})$ of a hypermap $\mathcal{H} = (F; r_0, r_1, r_2)$ is a finite quotient of the free product

$$\Delta := \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 = \langle R_0, R_1, R_2 \mid R_0^2, R_1^2, R_2^2 \rangle$$
.

Download English Version:

https://daneshyari.com/en/article/4647016

Download Persian Version:

https://daneshyari.com/article/4647016

<u>Daneshyari.com</u>