On a local similarity of graphs

Tomasz Dzido ${ }^{\text {a,*, }}$ Krzysztof Krzywdziński ${ }^{\text {b }}$
${ }^{a}$ Institute of Informatics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
${ }^{\mathrm{b}}$ Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland

A R T I CLE INFO

Article history:

Received 4 November 2013
Received in revised form 30 December 2014
Accepted 18 January 2015
Available online 14 February 2015

Keywords:

Similarity of graphs
Induced subgraphs

Abstract

We say that two graphs G and H, having the same number of vertices n, are k-similar if they contain a common induced subgraph of order k. We will consider the following question: how large does n need to be to ensure at least one k-similar pair in any family of l graphs on n vertices? We will present various lower and upper bounds on n. In particular, we will prove that for $l=3$, n equals the Ramsey number $R(k, k)$. Last but not least we will determine the exact values of n for $k=3, k=4$ and all l.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper all graphs are undirected, finite and contain neither loops nor multiple edges. Let G be such a graph and \bar{G} the complement of G. We assume that the reader is familiar with standard graph-theoretic terminology and refer the readers to standard texts from graph theory for any notation that is not defined here.

We say that two graphs G and H, having the same number of vertices n, are k-similar if they contain a common induced subgraph of order k. Assume that $l \geq 3$.

Definition 1. Let $\eta(k, l)$ be the smallest n such that in any family of l graphs on n vertices there exists a k-similar pair of graphs.

The problem of setting the value of $\eta(k, l)$ is naturally linked to the question of how much l graphs may be different from each other.

In this article we are considering the problem of finding the value $\eta(k, l)$. To the best of our knowledge no problem of this sort has been studied before. However somewhat similar questions was put by Chung, Erdös and Spencer in [4] and by Chung, Erdös, Graham, Ulam and Yao in [3]. The authors of those articles were interested in finding a common induced subgraph of two dense graphs. For two graphs G and H they studied the properties of the function $U(G, H)$ which is the least integer t such that $E(G)$ can be partitioned into E_{1}, \ldots, E_{t}, and $E(H)$ can be partitioned into $E_{1}^{\prime}, \ldots, E_{t}^{\prime}$ in such a way that the graphs formed by E_{i} and E_{i}^{\prime} are isomorphic for each i. Some new considerations were presented by other authors, including Bollobás, Kittipassorn, Narayanan and Scott [2] and Lee, Loh and Sudakov [6]. While these are not directly related to the problem at hand, they are similar in nature, and provide further justification for studying the function $\eta(k, l)$.

An additional motivation for studying $\eta(k, l)$ is the fact that it is closely related to the Ramsey number. The Ramsey number $R(k, k)$ is the minimum number n such that any graph G on n vertices contains either a k-vertex clique K_{k}, or an independent set of size k denoted by $\overline{K_{k}}$ (see [7] for known values, properties and references to these numbers). It will be shown that $\eta(k, 3)=R(k, k)$, therefore the number $\eta(k, l)$ might be considered a non-trivial generalization of the Ramsey number.

[^0]Table 1
Values of $\eta(k, l)$ for $k=3$ and $k=4$.

l	3	4	5	6	7	8	9	10	11
$k=3$	6	5	3	3	3	3	3	3	3
$k=4$	18	10	7	6	6	5	5	5	5

In the next section we will present the connections of $\eta(k, l)$ to the Ramsey number. Then, in the following section, we will show various lower bounds on $\eta(k, l)$. Section 4 is devoted to the case of large $l=l(k)$. In the last section we will give exact results for small values of k which are summarized in Table 1.

2. Relation to the Ramsey number

Theorem 2. Let $k \geq 3$. Then

$$
\eta(k, 3)=R(k, k)
$$

Since $\eta(k, 3)=R(k, k)$ and $\eta(k, l) \geq \eta\left(k, l^{\prime}\right)$ for $l<l^{\prime}$, then we immediately obtain an important consequence which is an important consequence of Theorem 2 .

Corollary 3. Let $k, l \geq 3$. Then the number $\eta(k, l)$ is a well-defined finite number.
The Ramsey number gives also an upper bound for $\eta(k, l)$ if $l \geq 2 k+1$. It is depicted by the following theorem.
Theorem 4. Let $k \geq 3$. Then $\eta(k, 2 k+1) \leq R(k-1, k-1)$.
Now we will prove both theorems.
Proof of Theorem 2. Denote by R_{k} the Ramsey graph, i.e. a graph with maximum possible number of vertices n, no clique of size k, and no independent set of size k. By the definition $\left|V\left(R_{k}\right)\right|=R(k, k)-1$.

For the lower bound $\eta(k, 3) \geq R(k, k)$, assume that $n=R(k, k)-1$ and consider the graphs $G_{1}=K_{n}, G_{2}=\overline{K_{n}}$ and $G_{3}=$ R_{k}. Observe that each possible k-vertex subgraph of G_{1} and G_{2} is K_{k} and $\overline{K_{k}}$, respectively. Moreover, $G_{3}=R_{k}$ contains neither K_{k} nor $\overline{K_{k}}$. Therefore among G_{1}, G_{2}, G_{3} there is no k-similar pair of graphs.

For the upper bound $\eta(k, 3) \leq R(k, k)$, let us consider three arbitrary graphs G_{1}, G_{2}, G_{3} such that $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|=$ $\left|V\left(G_{3}\right)\right|=n$ and $n \geq R(k, k)$. By the definition of the Ramsey number, we have that each G_{i} contains K_{k} or K_{k}. Therefore by the Pigeonhole Principle, among G_{1}, G_{2}, G_{3} there are two graphs which contain K_{k} or two graphs which contain $\overline{K_{k}}$. Those graphs form a k-similar pair of graphs.
Proof of Theorem 4. Consider any $2 k+1$ graphs $G_{1}, G_{2}, \ldots, G_{2 k+1}$ of order $R(k-1, k-1)$. Since $\left|V\left(G_{i}\right)\right|=R(k-1, k-1)$, then each of graphs $G_{1}, G_{2}, \ldots, G_{2 k+1}$ contains either a clique or an independent set of order $k-1$. By the Pigeonhole Principle, at least $k+1$ among them contain K_{k-1} or at least $k+1$ of them contain $\overline{K_{k-1}}$. Without loss of generality assume that $G_{1}, G_{2}, \ldots, G_{k+1}$ have K_{k-1} as a subgraph. For each $1 \leq i \leq k+1$ fix a vertex $v_{i} \in V\left(G_{i}\right)-K_{k-1}$. In each G_{i} for $1 \leq i \leq k+1$ consider the subgraph induced by the vertices of the K_{k-1} and v_{i}. Since v_{i} may be joined by $0,1, \ldots$, or $k-1$ edges of K_{k-1}, it follows from the Pigeonhole Principle that there are two graphs with v_{i} having the same degree to the clique, thus giving a k-similar pair of graphs among $G_{1}, G_{2}, \ldots, G_{k+1}$.

3. Lower bounds

We present here some lower bounds for different range of parameters.
Theorem 5. Let $k \geq 3$. Then $\eta(k, 4)>(k-1)^{2}$.
This bound is sometimes tight, as evidenced in Section 5 (see $\eta(3,4)=5$ or $\eta(4,4)=10$).
Theorem 6. Let $k, l \geq 3$ and $t \geq 1$. Then

$$
\eta(t k, l)>t \eta(\lceil k / t\rceil, t l)-t .
$$

The above theorems are constructive. The following one relies on the probabilistic method.
Theorem 7. Let $k, l \geq 3$ then

$$
\eta(k, l) \geq \frac{(k-2)^{(k-2) /(2 k-2)} 2^{k / 4}}{e^{1 / 2} k^{1 /(k-1)} l^{1 /(2 k-2)}}
$$

Remark 8. Using the first moment method one may obtain the following, similar result

$$
\eta(k, l)>\frac{k^{1 / 2} 2^{(k-1) / 4}}{e^{1 / 2} l^{1 / k}}, \quad \text { for } k, l \geq 3
$$

https://daneshyari.com/en/article/4647021

Download Persian Version:

https://daneshyari.com/article/4647021

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: tdz@inf.ug.edu.pl (T. Dzido), kkrzywd@amu.edu.pl (K. Krzywdziński).
 http://dx.doi.org/10.1016/j.disc.2015.01.016
 0012-365X/® 2015 Elsevier B.V. All rights reserved.

