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a b s t r a c t

We say that two graphs G andH , having the same number of vertices n, are k-similar if they
contain a common induced subgraph of order k. We will consider the following question:
how large doesnneed to be to ensure at least one k-similar pair in any family of l graphs onn
vertices?Wewill present various lower and upper bounds on n. In particular, wewill prove
that for l = 3, n equals the Ramsey number R(k, k). Last but not least we will determine
the exact values of n for k = 3, k = 4 and all l.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper all graphs are undirected, finite and contain neither loops normultiple edges. LetG be such a graph andG the
complement of G. We assume that the reader is familiar with standard graph-theoretic terminology and refer the readers
to standard texts from graph theory for any notation that is not defined here.

We say that two graphs G and H , having the same number of vertices n, are k-similar if they contain a common induced
subgraph of order k. Assume that l ≥ 3.

Definition 1. Let η(k, l) be the smallest n such that in any family of l graphs on n vertices there exists a k-similar pair of
graphs.

The problem of setting the value of η(k, l) is naturally linked to the question of howmuch l graphs may be different from
each other.

In this article we are considering the problem of finding the value η(k, l). To the best of our knowledge no problem of
this sort has been studied before. However somewhat similar questions was put by Chung, Erdös and Spencer in [4] and
by Chung, Erdös, Graham, Ulam and Yao in [3]. The authors of those articles were interested in finding a common induced
subgraph of two dense graphs. For two graphs G and H they studied the properties of the function U(G,H) which is the
least integer t such that E(G) can be partitioned into E1, . . . , Et , and E(H) can be partitioned into E ′

1, . . . , E
′
t in such a way

that the graphs formed by Ei and E ′

i are isomorphic for each i. Some new considerations were presented by other authors,
including Bollobás, Kittipassorn, Narayanan and Scott [2] and Lee, Loh and Sudakov [6]. While these are not directly related
to the problem at hand, they are similar in nature, and provide further justification for studying the function η(k, l).

An additional motivation for studying η(k, l) is the fact that it is closely related to the Ramsey number. The Ramsey
number R(k, k) is the minimum number n such that any graph G on n vertices contains either a k-vertex clique Kk, or an in-
dependent set of size k denoted byKk (see [7] for known values, properties and references to these numbers). Itwill be shown
that η(k, 3) = R(k, k), therefore the number η(k, l)might be considered a non-trivial generalization of the Ramsey number.
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Table 1
Values of η(k, l) for k = 3 and k = 4.

l 3 4 5 6 7 8 9 10 11 ≥12

k = 3 6 5 3 3 3 3 3 3 3 3
k = 4 18 10 7 6 6 5 5 5 5 4

In the next section we will present the connections of η(k, l) to the Ramsey number. Then, in the following section, we
will show various lower bounds on η(k, l). Section 4 is devoted to the case of large l = l(k). In the last section we will give
exact results for small values of kwhich are summarized in Table 1.

2. Relation to the Ramsey number

Theorem 2. Let k ≥ 3. Then

η(k, 3) = R(k, k).

Since η(k, 3) = R(k, k) and η(k, l) ≥ η(k, l′) for l < l′, then we immediately obtain an important consequence which is an
important consequence of Theorem 2.

Corollary 3. Let k, l ≥ 3. Then the number η(k, l) is a well-defined finite number.

The Ramsey number gives also an upper bound for η(k, l) if l ≥ 2k + 1. It is depicted by the following theorem.

Theorem 4. Let k ≥ 3. Then η(k, 2k + 1) ≤ R(k − 1, k − 1).

Now we will prove both theorems.
Proof of Theorem 2. Denote by Rk the Ramsey graph, i.e. a graph with maximum possible number of vertices n, no clique
of size k, and no independent set of size k. By the definition |V (Rk)| = R(k, k) − 1.

For the lower bound η(k, 3) ≥ R(k, k), assume that n = R(k, k) − 1 and consider the graphs G1 = Kn, G2 = Kn and G3 =

Rk. Observe that each possible k-vertex subgraph of G1 and G2 is Kk and Kk, respectively. Moreover, G3 = Rk contains neither
Kk nor Kk. Therefore among G1, G2, G3 there is no k-similar pair of graphs.

For the upper bound η(k, 3) ≤ R(k, k), let us consider three arbitrary graphs G1, G2, G3 such that |V (G1)| = |V (G2)| =

|V (G3)| = n and n ≥ R(k, k). By the definition of the Ramsey number, we have that each Gi contains Kk or Kk. Therefore by
the Pigeonhole Principle, among G1, G2, G3 there are two graphs which contain Kk or two graphs which contain Kk. Those
graphs form a k-similar pair of graphs. �

Proof of Theorem 4. Consider any 2k+1 graphs G1,G2, . . . ,G2k+1 of order R(k−1, k−1). Since |V (Gi)| = R(k−1, k−1),
then each of graphs G1,G2, . . . ,G2k+1 contains either a clique or an independent set of order k − 1. By the Pigeonhole Prin-
ciple, at least k + 1 among them contain Kk−1 or at least k + 1 of them contain Kk−1. Without loss of generality assume that
G1,G2, . . . ,Gk+1 have Kk−1 as a subgraph. For each 1 ≤ i ≤ k+ 1 fix a vertex vi ∈ V (Gi) − Kk−1. In each Gi for 1 ≤ i ≤ k+ 1
consider the subgraph induced by the vertices of the Kk−1 and vi. Since vi may be joined by 0, 1, . . . , or k− 1 edges of Kk−1,
it follows from the Pigeonhole Principle that there are two graphs with vi having the same degree to the clique, thus giving
a k-similar pair of graphs among G1,G2, . . . ,Gk+1. �

3. Lower bounds

We present here some lower bounds for different range of parameters.

Theorem 5. Let k ≥ 3. Then η(k, 4) > (k − 1)2.

This bound is sometimes tight, as evidenced in Section 5 (see η(3, 4) = 5 or η(4, 4) = 10).

Theorem 6. Let k, l ≥ 3 and t ≥ 1. Then

η(tk, l) > tη(⌈k/t⌉, tl) − t.

The above theorems are constructive. The following one relies on the probabilistic method.

Theorem 7. Let k, l ≥ 3 then

η(k, l) ≥
(k − 2)(k−2)/(2k−2)2k/4

e1/2k1/(k−1)l1/(2k−2)
.

Remark 8. Using the first moment method one may obtain the following, similar result

η(k, l) >
k1/22(k−1)/4

e1/2l1/k
, for k, l ≥ 3.
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