Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Tomasz Dzido^{a,*}, Krzysztof Krzywdziński^b

^a Institute of Informatics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland ^b Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland

ARTICLE INFO

Article history: Received 4 November 2013 Received in revised form 30 December 2014 Accepted 18 January 2015 Available online 14 February 2015

Keywords: Similarity of graphs Induced subgraphs

ABSTRACT

We say that two graphs *G* and *H*, having the same number of vertices *n*, are *k*-similar if they contain a common induced subgraph of order *k*. We will consider the following question: how large does *n* need to be to ensure at least one *k*-similar pair in any family of *l* graphs on *n* vertices? We will present various lower and upper bounds on *n*. In particular, we will prove that for l = 3, *n* equals the Ramsey number R(k, k). Last but not least we will determine the exact values of *n* for k = 3, k = 4 and all *l*.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper all graphs are undirected, finite and contain neither loops nor multiple edges. Let G be such a graph and \overline{G} the complement of G. We assume that the reader is familiar with standard graph-theoretic terminology and refer the readers to standard texts from graph theory for any notation that is not defined here.

We say that two graphs *G* and *H*, having the same number of vertices *n*, are *k*-similar if they contain a common induced subgraph of order *k*. Assume that $l \ge 3$.

Definition 1. Let $\eta(k, l)$ be the smallest *n* such that in any family of *l* graphs on *n* vertices there exists a *k*-similar pair of graphs.

The problem of setting the value of $\eta(k, l)$ is naturally linked to the question of how much l graphs may be different from each other.

In this article we are considering the problem of finding the value $\eta(k, l)$. To the best of our knowledge no problem of this sort has been studied before. However somewhat similar questions was put by Chung, Erdös and Spencer in [4] and by Chung, Erdös, Graham, Ulam and Yao in [3]. The authors of those articles were interested in finding a common induced subgraph of two dense graphs. For two graphs *G* and *H* they studied the properties of the function U(G, H) which is the least integer *t* such that E(G) can be partitioned into E_1, \ldots, E_t , and E(H) can be partitioned into E'_1, \ldots, E'_t in such a way that the graphs formed by E_i and E'_i are isomorphic for each *i*. Some new considerations were presented by other authors, including Bollobás, Kittipassorn, Narayanan and Scott [2] and Lee, Loh and Sudakov [6]. While these are not directly related to the problem at hand, they are similar in nature, and provide further justification for studying the function $\eta(k, l)$.

An additional motivation for studying $\eta(k, l)$ is the fact that it is closely related to the Ramsey number. The Ramsey number R(k, k) is the minimum number n such that any graph G on n vertices contains either a k-vertex clique K_k , or an independent set of size k denoted by $\overline{K_k}$ (see [7] for known values, properties and references to these numbers). It will be shown that $\eta(k, 3) = R(k, k)$, therefore the number $\eta(k, l)$ might be considered a non-trivial generalization of the Ramsey number.

* Corresponding author. E-mail addresses: tdz@inf.ug.edu.pl (T. Dzido), kkrzywd@amu.edu.pl (K. Krzywdziński).

http://dx.doi.org/10.1016/j.disc.2015.01.016 0012-365X/© 2015 Elsevier B.V. All rights reserved.

984	
-----	--

Table 1

Values of $\eta(k$, l) for $k =$	3 and $k = 4$.

l	3	4	5	6	7	8	9	10	11	≥12
k = 3	6	5	3	3	3	3	3	3	3	3
k = 4	18	10	7	6	6	5	5	5	5	4

In the next section we will present the connections of $\eta(k, l)$ to the Ramsey number. Then, in the following section, we will show various lower bounds on $\eta(k, l)$. Section 4 is devoted to the case of large l = l(k). In the last section we will give exact results for small values of k which are summarized in Table 1.

2. Relation to the Ramsey number

Theorem 2. Let $k \ge 3$. Then

 $\eta(k, 3) = R(k, k).$

Since $\eta(k, 3) = R(k, k)$ and $\eta(k, l) \ge \eta(k, l')$ for l < l', then we immediately obtain an important consequence which is an important consequence of Theorem 2.

Corollary 3. Let $k, l \ge 3$. Then the number $\eta(k, l)$ is a well-defined finite number.

The Ramsey number gives also an upper bound for $\eta(k, l)$ if $l \ge 2k + 1$. It is depicted by the following theorem.

Theorem 4. Let $k \ge 3$. Then $\eta(k, 2k + 1) \le R(k - 1, k - 1)$.

Now we will prove both theorems.

Proof of Theorem 2. Denote by R_k the Ramsey graph, i.e. a graph with maximum possible number of vertices *n*, no clique of size *k*, and no independent set of size *k*. By the definition $|V(R_k)| = R(k, k) - 1$.

For the lower bound $\eta(k, 3) \ge R(k, k)$, assume that n = R(k, k) - 1 and consider the graphs $G_1 = K_n$, $G_2 = \overline{K_n}$ and $G_3 = R_k$. Observe that each possible k-vertex subgraph of G_1 and G_2 is K_k and $\overline{K_k}$, respectively. Moreover, $G_3 = R_k$ contains neither K_k nor $\overline{K_k}$. Therefore among G_1, G_2, G_3 there is no k-similar pair of graphs.

For the upper bound $\eta(k, 3) \le R(k, k)$, let us consider three arbitrary graphs G_1, G_2, G_3 such that $|V(G_1)| = |V(G_2)| = |V(G_3)| = n$ and $n \ge R(k, k)$. By the definition of the Ramsey number, we have that each G_i contains K_k or $\overline{K_k}$. Therefore by the Pigeonhole Principle, among G_1, G_2, G_3 there are two graphs which contain K_k or two graphs which contain $\overline{K_k}$. Those graphs form a k-similar pair of graphs. \Box

Proof of Theorem 4. Consider any 2k + 1 graphs $G_1, G_2, \ldots, G_{2k+1}$ of order R(k-1, k-1). Since $|V(G_i)| = R(k-1, k-1)$, then each of graphs $G_1, G_2, \ldots, G_{2k+1}$ contains either a clique or an independent set of order k-1. By the Pigeonhole Principle, at least k + 1 among them contain K_{k-1} or at least k + 1 of them contain $\overline{K_{k-1}}$. Without loss of generality assume that $G_1, G_2, \ldots, G_{k+1}$ have K_{k-1} as a subgraph. For each $1 \le i \le k+1$ fix a vertex $v_i \in V(G_i) - K_{k-1}$. In each G_i for $1 \le i \le k+1$ consider the subgraph induced by the vertices of the K_{k-1} and v_i . Since v_i may be joined by $0, 1, \ldots,$ or k-1 edges of K_{k-1} , it follows from the Pigeonhole Principle that there are two graphs with v_i having the same degree to the clique, thus giving a k-similar pair of graphs among $G_1, G_2, \ldots, G_{k+1}$.

3. Lower bounds

We present here some lower bounds for different range of parameters.

Theorem 5. Let $k \ge 3$. Then $\eta(k, 4) > (k - 1)^2$.

This bound is sometimes tight, as evidenced in Section 5 (see $\eta(3, 4) = 5$ or $\eta(4, 4) = 10$).

Theorem 6. Let $k, l \ge 3$ and $t \ge 1$. Then

 $\eta(tk, l) > t\eta(\lceil k/t \rceil, tl) - t.$

The above theorems are constructive. The following one relies on the probabilistic method.

Theorem 7. Let $k, l \ge 3$ then

$$\eta(k,l) \ge \frac{(k-2)^{(k-2)/(2k-2)}2^{k/4}}{e^{1/2}k^{1/(k-1)}l^{1/(2k-2)}}$$

Remark 8. Using the first moment method one may obtain the following, similar result

$$\eta(k, l) > \frac{k^{1/2} 2^{(k-1)/4}}{e^{1/2} l^{1/k}}, \text{ for } k, l \ge 3$$

Download English Version:

https://daneshyari.com/en/article/4647021

Download Persian Version:

https://daneshyari.com/article/4647021

Daneshyari.com