Ramsey numbers of trees versus fans

Yanbo Zhang ${ }^{\text {a,b }}$, Hajo Broersma ${ }^{\text {b }}$, Yaojun Chen ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Nanjing University, Nanjing 210093, PR China
${ }^{\mathrm{b}}$ Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

A R T I C L E I N F O

Article history:

Received 17 July 2014
Received in revised form 23 January 2015
Accepted 24 January 2015
Available online 14 February 2015

Keywords:

Ramsey number
Tree
Star
Fan

Abstract

For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that, for any graph G of order N, either G contains G_{1} as a subgraph or the complement of G contains G_{2} as a subgraph. Let T_{n} be a tree of order n, S_{n} a star of order n, and F_{m} a fan of order $2 m+1$, i.e., m triangles sharing exactly one vertex. In this paper, we prove that $R\left(T_{n}, F_{m}\right)=2 n-1$ for $n \geq 3 m^{2}-2 m-1$, and if $T_{n}=S_{n}$, then the range can be replaced by $n \geq \max \{m(m-1)+1,6(m-1)\}$, which is tight in some sense.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we deal with finite simple graphs only. For a nonempty proper subset $S \subseteq V(G)$, let $G[S]$ and $G-S$ denote the subgraph induced by S and $V(G)-S$, respectively. Let $N_{S}(v)$ be the set of all the neighbors of a vertex v that are contained in $S, N_{S}[v]=N_{S}(v) \cup\{v\}$ and $d_{S}(v)=\left|N_{S}(v)\right|$. If $S=V(G)$, we write $N(v)=N_{G}(v), N[v]=N(v) \cup\{v\}$ and $d(v)=d_{G}(v)$. For two vertex-disjoint graphs G_{1} and $G_{2}, G_{1} \cup G_{2}$ denotes their disjoint union and $G_{1}+G_{2}$ is the graph obtained from $G_{1} \cup G_{2}$ by joining every vertex of G_{1} to every vertex of G_{2}. We use $m G$ to denote the union of m vertex-disjoint copies of G. A path, a star, a tree, a cycle and a complete graph of order n are denoted by $P_{n}, S_{n}=K_{1}+(n-1) K_{1}, T_{n}, C_{n}$ and K_{n}, respectively. A book $B_{n}=K_{2}+n K_{1}$, i.e., it consists of n triangles sharing exactly one common edge, and a fan $F_{n}=K_{1}+n K_{2}$, i.e., it consists of n triangles sharing exactly one common vertex. We use $\Delta(G)$ and $\delta(G)$ to denote the maximum and minimum degree of a graph G.

Given two graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that, for any graph G of order N, either G contains G_{1} as a subgraph or \bar{G} contains G_{2} as a subgraph, where \bar{G} is the complement of G. If both G_{1} and G_{2} are complete graphs, then $R\left(G_{1}, G_{2}\right)$ is called a classical Ramsey number, otherwise it is called a generalized Ramsey number. Because of the extreme difficulty encountered in the determination of classical Ramsey numbers, Chvátal and Harary [10-12] in a series of papers suggested studying generalized Ramsey numbers, both for their own sake, and for the light they might shed on classical Ramsey numbers. The following is a celebrated early result on generalized Ramsey numbers due to Chvátal.

Theorem 1 (Chvátal [9]). $R\left(T_{n}, K_{m}\right)=(n-1)(m-1)+1$ for all positive integers m and n.
Let H be a connected graph of order $p, \chi(G)$ the chromatic number of G and $s(G)$ the chromatic surplus of G, i.e., the minimum number of vertices in some color class under all proper vertex colorings with $\chi(G)$ colors. Based on Chvátal's result, Burr [4]

[^0]established the following general lower bound for $R(H, G)$ when $p \geq s(G): R(H, G) \geq(p-1)(\chi(G)-1)+s(G)$. He also defined H to be G-good in case equality holds in this inequality. By Theorem 1, it is easy to see that T_{n} is K_{m}-good. This raises the natural questions whether and when T_{n} is G-good if G consists of ℓ complete graphs K_{m} sharing exactly one vertex. A special case of the question is whether T_{n} is F_{ℓ}-good. Another natural question is for what graphs G, T_{n} is G-good.

In 1982, Burr et al. determined the Ramsey numbers of sufficiently large trees versus odd cycles, by showing that T_{n} is C_{m}-good for odd $m \geq 3$ and $n \geq 756 m^{10}$.

Theorem 2 (Burr et al. [5]). $R\left(T_{n}, C_{m}\right)=2 n-1$ for odd $m \geq 3$ and $n \geq 756 m^{10}$.
In 1988, Erdős et al. confirmed the Ramsey numbers of relatively large trees versus books, by showing that T_{n} is B_{m}-good for $n \geq 3 m-3$, a result that we will use in our proof of Lemma 2 in the next section.

Theorem 3 (Erdős et al. [13]). $R\left(T_{n}, B_{m}\right)=2 n-1$ for $n \geq 3 m-3$.
Other results on Ramsey numbers concerning trees can be found in [1-3,6-8,14], see [15] for a survey. In this paper, we first show that S_{n} is F_{m}-good for all integers $n \geq \max \{m(m-1)+1,6(m-1)\}$, by proving the following result.

Theorem 4. $R\left(S_{n}, F_{m}\right)=2 n-1$ for $n \geq m(m-1)+1$ and $m \neq 3,4,5$, and the lower bound $n \geq m(m-1)+1$ is best possible. $R\left(S_{n}, F_{m}\right)=2 n-1$ for $n \geq 6(m-1)$ and $m=3,4,5$.

We postpone the proof of Theorem 4 to the last section. Next we show that T_{n} is F_{m}-good for positive integers $n \geq$ $3 m^{2}-2 m-1$, which is the main theorem of our paper.

Theorem 5. $R\left(T_{n}, F_{m}\right)=2 n-1$ for all integers $n \geq 3 m^{2}-2 m-1$.
We also postpone the proof of Theorem 5 to the last section. We next show that the following more general result can be obtained from Theorem 5 by induction.

Corollary 1. $R\left(T_{n}, K_{\ell-1}+m K_{2}\right)=\ell(n-1)+1$ for $\ell \geq 2$ and $n \geq 3 m^{2}-2 m-1$.
Proof. By Theorem 5, the statement is valid for $\ell=2$. Assume that $k \geq 3$ and that the statement holds for all integers ℓ with $2 \leq \ell<k$. We prove that it also holds for $\ell=k$.

Since $k K_{n-1}$ contains no T_{n} and its complement contains no K_{k+1}, hence no $K_{k-1}+m K_{2}$, we have $R\left(T_{n}, K_{k-1}+m K_{2}\right) \geq$ $k(n-1)+1$. Let G be a graph of order $k(n-1)+1$. If $\delta(G) \geq n-1$, then by the following folklore lemma that is straightforward to prove using a Greedy approach, G contains T_{n} and the proof is complete. We present the lemma in a more specific form since we will use it in this form in the sequel.

Lemma 1. Let G be a graph with $\delta(G) \geq k$, and let $u \in V(G)$. Let T be a tree of order $k+1$ with $v \in V(T)$. Then T can be embedded into G in such a way that v is mapped to u.

Let us now assume that $\delta(G) \leq n-2$. Then $\Delta(\bar{G}) \geq(k-1)(n-1)+1$. Let v be a vertex with $d_{\bar{G}}(v)=\Delta(\bar{G})$. Then, by the induction hypothesis either $G\left[N_{\bar{G}}(v)\right]$ contains a T_{n}, or $\bar{G}\left[N_{\bar{G}}(v)\right]$ contains a $K_{k-2}+m K_{2}$, which together with v forms a $K_{k-1}+m K_{2}$ in \bar{G}. This completes the proof of Corollary 1.

We finish this section by posing a conjecture on the best possible lower bound for n for which T_{n} is F_{m}-good.
Conjecture 1. $R\left(T_{n}, F_{m}\right)=2 n-1$ for $n \geq m^{2}-m+1$.
Let G be any given graph. It is believed that $R\left(T_{n}, G\right) \leq R\left(S_{n}, G\right)$ in general, and all known results point in this direction. Based on this and Theorem 4, we believe that the above conjecture holds, at least for $m \geq 6$.

2. Two preliminary lemmas

In the next section we use the following lemma in our proof of Theorem 4. It is the special case of the statement of Theorem 4 when $m=2$.

Lemma 2. $R\left(S_{n}, F_{2}\right)=2 n-1$ for $n \geq 3$.
Proof. The lower bound $R\left(S_{n}, F_{2}\right) \geq 2 n-1$ is implied by the fact that $2 K_{n-1}$ contains no S_{n} and its complement contains no triangle, hence no F_{2}. It remains to prove that $R\left(S_{n}, F_{2}\right) \leq 2 n-1$ for $n \geq 3$.

Let G be a graph of order $2 n-1$. Suppose that G contains no F_{2} and \bar{G} has no S_{n}. Then $\Delta(\bar{G}) \leq n-2$ and so $\delta(G) \geq n$. By Theorem 3, G contains B_{2}. Let $x_{1} x_{2} x_{3} x_{4}$ be a C_{4} with diagonal $x_{2} x_{4}$ in G. Set $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $Y=V(G)-X$. If $n=3$, then $|Y|=1$ and the vertex in Y has at least three neighbors in X, and so G has F_{2}, a contradiction. Hence, $n \geq 4$. If $x_{1} x_{3} \in E(G)$, then $N_{Y}\left(x_{i}\right) \cap N_{Y}\left(x_{j}\right)=\emptyset$ for $1 \leq i<j \leq 4$, otherwise G contains F_{2}. Thus, we have $4(n-2) \leq \sum_{k=1}^{4} d_{Y}\left(x_{k}\right)+4 \leq 2 n-1$, which implies that $n \leq 3$, a contradiction. If $x_{1} x_{3} \notin E(G)$, then since G has no F_{2}, we get that $N_{Y}\left(x_{1}\right) \cap N_{Y}\left(x_{i}\right)=\emptyset$ for $i=2$, 4 and $N_{Y}\left(x_{1}\right)$ is an independent set of cardinality at least $n-2$. In this case, we have $d(y) \leq n-1$ for any $y \in N_{Y}\left(x_{1}\right)$, which contradicts that $\delta(G) \geq n$.

https://daneshyari.com/en/article/4647023

Download Persian Version:
https://daneshyari.com/article/4647023

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: yaojunc@nju.edu.cn (Y. Chen).

