Note

On colorings of variable words

Konstantinos Tyros

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK

A R TICLE INFO

Article history:

Received 10 September 2014
Received in revised form 23 January 2015
Accepted 24 January 2015
Available online 17 February 2015

Keywords:

Ramsey Theory
Graham-Rothschild theorem
Hales-Jewett Theorem
Variable words

Abstract

In this note, we prove that the base case of the Graham-Rothschild Theorem, i.e., the one that considers colorings of the (1-dimensional) variable words, admits bounds in the class ε^{5} of Grzegorczyk's hierarchy.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Graham-Rothschild Theorem [4] is a generalization of the well known Hales-Jewett Theorem [5] that considers colorings of m-parameter sets instead of constant words. The best known bounds for the Graham-Rothschild Theorem are due to S. Shelah [7] and belong to the class ε^{6} of Grzegorczyk's hierarchy. In this note we consider the "base" case of the Graham-Rothschild Theorem, that concerns colorings of (1-dimensional) variable words. We obtain bounds for this base case in ε^{5} of Grzegorczyk's hierarchy. Shelah's argument makes an iterated use of the Hales-Jewett Theorem, which has bounds in ε^{5} (see [7]), yielding even for the base case of the Graham-Rothschild Theorem bounds in ε^{6}. Roughly speaking, the improvement of the bounds is obtained by iterating a modified version of Shelah's insensitivity lemma instead of the Hales-Jewett Theorem. Although the proof is an appropriate modification of S. Shelah's proof for the Hales-Jewett Theorem, it is streamlined and independent.

The base case of the Graham-Rothschild Theorem is of particular interest, since it is the one needed for the proof of the density Hales-Jewett Theorem in [2]. Moreover, it has as an immediate consequence the finite version of the CarlsonSimpson Theorem on the left variable words and therefore the finite version of the Halpern-Läuchli theorem for level products of homogeneous trees (see also [8]).

To state the result of this note, we need some pieces of notation. Let k and n be positive integers. By [k] we denote the set $\{1, \ldots, k\}$ and $[k]^{n}$ the set of all sequences $\left(a_{0}, \ldots, a_{n-1}\right)$ of length n taking values in $[k]$. We view $[k]$ as a finite alphabet and the elements of $[k]^{n}$ as words. Thus, by the term word over k of length n we mean an element of $[k]^{n}$. Also let m be a positive integer and $v, v_{0}, \ldots, v_{m-1}$ distinct symbols not belonging to [k]. We view these symbols as variables. A variable word $w(v)$ over k is a sequence in $[k] \cup\{v\}$, where the variable v occurs at least once. More generally, an m-dimensional variable word $w\left(v_{0}, \ldots, v_{m-1}\right)$ over k is a sequence in $[k] \cup\left\{v_{0}, \ldots, v_{m-1}\right\}$ such that each v_{j} occurs at least once and they are in block position, meaning that if $w\left(v_{0}, \ldots, v_{m-1}\right)$ is of the form $\left(x_{0}, \ldots, x_{n-1}\right)$ then $\max \left\{i: x_{i}=v_{j}\right\}<\min \left\{i: x_{i}=v_{j+1}\right\}$ for all $0 \leqslant j<m-1$. Clearly, every variable word can be viewed as a 1 -dimensional variable word.

Let k, m be positive integers and $w\left(v_{0}, \ldots, v_{m-1}\right)$ an m-dimensional variable word over k. For every sequence of symbols $\mathbf{x}=\left(x_{i}\right)_{i=0}^{m-1}$ of length m we denote by $w(\mathbf{x})$ the sequence resulting by substituting each occurrence of v_{i} by x_{i} for all

[^0]$0 \leqslant i<m$. Observe that $w(\mathbf{x})$ is an m^{\prime}-dimensional variable word, for some $m^{\prime} \leqslant m$, if and only if \mathbf{x} is an m^{\prime}-dimensional variable word. In particular, $w(\mathbf{x})$ is a variable word if and only if \mathbf{x} is a variable word. An m^{\prime}-dimensional variable word is called reduced by $w\left(v_{0}, \ldots, v_{m-1}\right)$ if it is of the form $w(\mathbf{x})$ for some m^{\prime}-dimensional variable word \mathbf{x} of length m.

Theorem 1. For every triple of positive integers k, m, r there exists a positive integer n_{0} with the following property. For every integer n with $n \geqslant n_{0}$ and every r-coloring of all the variable words over k of length n, there exists an m-dimensional variable word $w\left(v_{0}, \ldots, v_{m-1}\right)$ over k of length n such that the set of all variable words over k reduced by $w\left(v_{0}, \ldots, v_{m-1}\right)$ is monochromatic. We denote the least such n_{0} by $G R(k, m, r)$.

Moreover, the numbers $G R(k, m, r)$ are upper bounded by a primitive recursive function belonging to the class ε^{5} of Grzegorczyk's hierarchy.

2. The Hindman Theorem

The case " $k=1$ " of Theorem 1 follows by the finite version of Hindman's theorem [6]. To state it we need some pieces of notation.

Let n, m, d be positive integers with $d \leqslant m \leqslant n$. We denote by $\mathcal{F}(n)$ the set of all non-empty subsets of $\{0, \ldots, n-1\}$. A finite sequence $\mathbf{s}=\left(s_{i}\right)_{i=0}^{m-1}$ in $\mathcal{F}(n)$ is called block if $\max s_{i}<\min s_{i+1}$ for all $0 \leqslant i<m-1$. We denote the set of all block sequences of length m in $\mathscr{F}(n)$ by $\operatorname{Block}^{m}(n)$. For every $\mathbf{s}=\left(s_{i}\right)_{i=0}^{m-1}$ in $\operatorname{Block}^{m}(n)$ we define the set of nonempty unions of \mathbf{s} to be

$$
\mathrm{NU}(\mathbf{s})=\left\{\bigcup_{i \in t} s_{i}: t \text { is a nonempty subset of }\{0, \ldots, m-1\}\right\}
$$

We say that a block sequence $\mathbf{t}=\left(t_{i}\right)_{i=0}^{d-1}$ in $\mathcal{F}(n)$ is a block subsequence of \mathbf{s} if $t_{i} \in \mathrm{NU}(\mathbf{s})$ for all $0 \leqslant i<d$. The finite version of Hindman's theorem is stated as follows.
Theorem 2. For every pair m, r of positive integers, there exists a positive integer n_{0} with the following property. For every finite block sequence \mathbf{s} of nonempty finite subsets of \mathbb{N} of length at least n_{0} and every coloring of the set $\mathrm{NU}(\mathbf{s})$ with r colors, there exists a block subsequence \mathbf{t} of \mathbf{s} of length m such that the set $\mathrm{NU}(\mathbf{t})$ is monochromatic. We denote the least n_{0} satisfying the above property by $\mathrm{H}(m, r)$.

Moreover, the numbers $\mathrm{H}(m, r)$ are upper bounded by a primitive recursive function belonging to the class \mathscr{E}^{4} of Grzegorczyk's hierarchy.

This finite version follows by the disjoint union theorem [4,9] and Ramsey's theorem. The bounds for the disjoint union theorem given in [9], as well as, the bound for the Ramsey numbers given in [3] are in ξ^{4}. Using these bounds, one can see that the numbers $\mathrm{H}(m, r)$ are upper bounded by a primitive recursive function belonging to the class ε^{4} of Grzegorczyk's hierarchy. We refer the interested reader to [1] for further details.

3. Insensitivity

The proof of Theorem 1 proceeds by induction on k. The main notion that helps us to carry out the inductive step of the proof is an appropriate modification of Shelah's insensitivity (see Definition 3 below).

First, let us introduce some additional notation. Let k, m, n be positive integers with $m \leqslant n$ and $w\left(v_{0}, \ldots, v_{m-1}\right)$ be an m-dimensional variable word over k of length n. We denote by $W_{v}^{k}(n)$ the set of all variable words over k of length n, while by $W_{v}^{k}\left(w\left(v_{0}, \ldots, v_{m-1}\right)\right)$ the set of all variable words over k reduced by $w\left(v_{0}, \ldots, v_{m-1}\right)$. If $w=w\left(v_{0}, \ldots, v_{m-1}\right)=\left(x_{i}\right)_{i=0}^{n-1}$, for every $j=0, \ldots, m-1$ we set

$$
\operatorname{supp}_{w}\left(v_{j}\right)=\left\{i \in\{0, \ldots, n-1\}: x_{i}=v_{j}\right\}
$$

We consider the following analogue of Shelah's insensitivity.
Definition 3. Let k, m, n be positive integers with $m \leqslant n$. Also let $w\left(v_{0}, \ldots, v_{m-1}\right)$ be an m-dimensional variable word over $k+1$ of length n and a, b in $[k+1]$ with $a \neq b$.
(i) We say that two variable words $\mathbf{x}=\left(x_{i}\right)_{i=0}^{n-1}$ and $\mathbf{y}=\left(y_{i}\right)_{i=0}^{n-1}$ over $k+1$ of length n are (a, b)-equivalent if for every e in $[k+1] \cup\{v\} \backslash\{a, b\}$, we have that $x_{i}=e$ if and only if $y_{i}=e$ for all i in $\{0, \ldots, n-1\}$.
(ii) We say that a coloring c of $W_{v}^{k+1}(n)$ is (a, b)-insensitive over $w\left(v_{0}, \ldots, v_{m-1}\right)$ if for every pair \mathbf{x}, \mathbf{y} of (a, b)-equivalent words over $k+1$ of length m, we have that $c(w(\mathbf{x}))=c(w(\mathbf{y}))$.
We prove the following analogue of Shelah's insensitivity lemma.
Lemma 4. For every triple k, m, r of positive integers there exists a positive integer n_{0} satisfying the following. For every integer n with $n \geqslant n_{0}$, every a, b in $[k+1]$ with $a \neq b$ and every r-coloring c of $W_{v}^{k+1}(n)$ there exists an m-dimensional variable word $w\left(v_{0}, \ldots, v_{m-1}\right)$ over $k+1$ of length n such that c is (a, b)-insensitive over $w\left(v_{0}, \ldots, v_{m-1}\right)$. We denote the least such n_{0} by $\mathrm{Sh}_{v}(k, m, r)$.

Finally, the numbers $\mathrm{Sh}_{v}(k, m, r)$ are upper bounded by a primitive recursive function belonging to the class ε^{4} of Grzegorczyk's hierarchy.

https://daneshyari.com/en/article/4647028

Download Persian Version:

https://daneshyari.com/article/4647028

Daneshyari.com

[^0]: E-mail address: k.tyros@warwick.ac.uk.
 http://dx.doi.org/10.1016/j.disc.2015.01.031
 0012-365X/© 2015 Elsevier B.V. All rights reserved.

