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a b s t r a c t

A universal traversal sequence for the family of all connected d-regular graphs of order n
with an edge-labeling is a sequence of {0, 1, . . . , d − 1}∗ that traverses every graph of the
family starting at every vertex of the graph. Reflecting sequences are variants of universal
traversal sequences. A t-reflecting sequence for the family of all labeled chains of length n
is a sequence of {0, 1}∗ that alternately visits the end-vertices and reflects at least t times
in every labeled chain of the family. We present an algorithm for finding lower bounds
on the lengths of reflecting sequences for labeled chains. Using the algorithm, we show a
length lower bound of 19t − 214 for t-reflecting sequences for labeled chains of length 7,
which yields the length lower bounds of Ω(n1.51) and Ω(d0.49n2.51) for universal traversal
sequences for 2- and d-regular graphs, respectively, of n vertices, where 3 ≤ d ≤

n
17 + 1.

© 2015 Elsevier B.V. All rights reserved.

1. Preliminaries

Reflecting sequences are variants of universal traversal sequences, and were introduced by Tompa [16] in proving lower
bounds on the lengths of universal traversal sequences. The study of universal traversal sequences is motivated by the
complexity of graph traversal. Good bounds on the lengths of universal traversal sequences translate into good bounds on
the time complexity of certain undirected graph traversal algorithms running in very limited space.

Aleliunas et al. [2] proved the existence of polynomial-length universal traversal sequences, yielding polynomial-time
and logarithmic-space (non-uniform) deterministic algorithms for undirected graph traversal. Beame et al. [5] used variants
of the jumping automaton for graphs of Cook and Rackoff [10] to study time–space tradeoffs for undirected graph traversal.
Good lower bounds on the length of universal traversal sequences provide a prerequisite to proving time–space tradeoffs
for traversing undirected graphs for these computational models.

1.1. Universal traversal sequences for edge-labeled undirected graphs

For a graph G, denote by V (G) and E(G) the vertex set and edge set of G, respectively. For positive integers d and n
with d < n, let G(d, n) be the set of all connected d-regular graphs of order n with an edge-labeling. The edge-labeling on
G ∈ G(d, n) is defined as follows: Every edge {u, v} ∈ E(G) is associated with two labels lu,v, lv,u ∈ {0, 1, . . . , d − 1} such
that for every u ∈ V (G), {lu,v | {u, v} ∈ E(G)} = {0, 1, . . . , d − 1}. Note that G(d, n) is not empty if and only if dn is even
(see, for example, [15]). A sequenceU ∈ {0, 1, . . . , d−1}∗ can be considered as a sequence of edge-traversal commands and
induces a walk starting at any vertex in every labeled graph in G(d, n). We say that such a sequence U traverses G ∈ G(d, n)
starting at v0 ∈ V (G) if, by starting at v0 and following the sequence of edge labels in U , all the vertices in G are eventually
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Table 1
Some representatives of lower and upper bounds on U(d, n).

Bound on U(d, n) Range of d Reference

Lower bound
Ω(nlog5 10) (≈Ω(n1.43)) d = 2 [8]
Ω(nlog7 19) (≈Ω(n1.51)) d = 2 This paper
Ω(d2−log5 10n1+log5 10) (≈Ω(d0.57n2.43)) 3 ≤ d ≤ n1−log10 5 (≈n0.30) [8]
Ω(d2−log7 19n1+log7 19) (≈Ω(d0.49n2.51)) 3 ≤ d ≤ n1−log19 7 (≈n0.34) This paper
Ω(d2n2) (n0.34

≈) n1−log19 7 < n ≤
n
3 − 2 [7]

Ω(n2) n
3 − 2 < d [3]

Upper bound

O(n3) d = 2 [1]
O(n4.03) (log-space constructible) d = 2 [14]
O(dn3 log n) 3 ≤ d ≤

n
2 − 1 [13]

O(n3 log n) n
2 − 1 < d [9]

visited. The sequence U is a universal traversal sequence (UTS) for G(d, n) if U traverses every G ∈ G(d, n) starting at every
vertex in G.

Let U(d, n) denote the length of a shortest UTS for non-empty G(d, n), and define U(d, n) = U(d, n + 1) in case G(d, n)
is empty. The lower and upper bounds on U(d, n) for various ranges of d were studied in [1–4,7,9,13,16,8,12,11], and [14].
Some representatives of these bounds on U(d, n) are summarized in Table 1.

Currently, the best lower bounds on U(d, n) are:

U(d, n) =


Ω(nlog7 19) if d = 2,

Ω(d2−log7 19n1+log7 19) if 3 ≤ d ≤
n
17

+ 1,

which were obtained using a computationally intensive approach with several optimizations in the algorithm. In this paper
we present the algorithm1 and detail the refinements and optimizations that aim to lower its time complexity.

1.2. Reflecting sequences for labeled chains

For positive integer n, a labeled chain of length n is a graph G with vertex set V (G) = {0, 1, . . . , n} and edge set
E(G) = {{i, i + 1} | 0 ≤ i < n} with an edge-labeling defined as follows: Every edge {i, i + 1} ∈ E(G) is associated
with two labels li,i+1 and li+1,i, each a non-empty subset of {0, 1}, such that: (1) l0,1 = ln,n−1 = {0, 1}, and (2) li,i−1 and li,i+1
form a partition of {0, 1} for each i ∈ {1, 2, . . . , n − 1}.

Denote by L(n) the set of all labeled chains of length n. We identify a labeled chain G ∈ L(n) with the sequence (of
forward edge-labels) α = α1α2 · · · αn−1 ∈ {0, 1}n−1, where li,i+1 = {αi} for all i ∈ {1, 2, . . . , n−1}; the sequence α is called
the label of G.

Given a labeled chain G ∈ L(n), every sequence U = U1U2 · · ·Uk ∈ {0, 1}k where k ≥ 0, when considered as an edge-
traversal sequence starting at vertex 0 in G, determines a unique sequence (0 = v0, v1, v2, . . . , vk) ∈ {0, 1, . . . , n}k+1 such
that Ui ∈ lvi−1,vi for all i ∈ {1, 2, . . . , k}. For positive integer t , a sequence U ∈ {0, 1}∗ is said to reflect t times in G ∈ L(n)
if the walk in G induced by U alternately visits the end-vertices n and 0 at least t times, that is, there exists a sequence of
ascending indices, 0 < i1 < i2 < · · · < it ≤ |U|, such that vi2j−1 = n for all j ∈ {1, 2, . . . , ⌈ t

2⌉} and vi2j = 0 for all
j ∈ {1, 2, . . . , ⌊ t

2⌋}. The sequence U is called a t-reflecting sequence for L(n) if U reflects t times in every G ∈ L(n). Denote
by R(t, n) the length of a shortest t-reflecting sequence for L(n).

Theorem 1 reduces the length lower bounds for universal traversal sequences to those for t-reflecting sequences.

Theorem 1 ([16]).
1. For every positive integer n, U(2, 2n) ≥ R(1, n).
2. For all positive integers d and n such that d ≥ 3 and 16(d − 1) divides n,

U(d, n) ≥
d
2
R


(d − 2)n

2
+ 4,

n
16(d − 1)


.

We refine Corollary 6 of [16] to obtain a lower bound on R(t, n) in Lemma 3, by using the recurrence in Theorem 2.

Theorem 2 ([16]). For all positive integers t, m, and n,

R(t,mn) ≥ R(R(t,m), n).

1 An implementation of the algorithm is available upon request from the author.
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