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a b s t r a c t

We characterize pairs of orthogonal countable ordinals. Two ordinals α and β are
orthogonal if there are two linear orders A and B on the same set V with order types α
and β respectively such that the only maps preserving both orders are the constant maps
and the identity map. We prove that if α and β are two countable ordinals, with α ≤ β ,
then α and β are orthogonal if and only if either ω + 1 ≤ α or α = ω and β < ωβ .

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The following notion has been introduced by Demetrovics, Miyakawa, Rosenberg, Simovici and Stojmenović [5]:
Two orders P and Q on the same set are orthogonal if their only common order preserving maps are the identity map and

the constant maps.
In this paper, we say that two ordinals α and β are orthogonal if there exist two linear orders A and B on the same set V

with order typesα and β respectively such that the onlymaps preserving both orders are the constantmaps and the identity
map. Let ω be the first infinite ordinal.

We prove:

Theorem 1. If α and β are two countable ordinals, with α ≤ β , then α and β are orthogonal if and only if either ω + 1 ≤ α or
α = ω and β < ωβ .

The proof of Theorem 1 will be done in Section 4, using the following result.

Theorem 2. There are 2ℵ0 linear orders L of order type ω on N such that L is orthogonal to the natural order on N.

This result will be given in Section 3, and follows from a simple construction which gives a bit more (see Corollary 2).

∗ Corresponding author.
E-mail addresses: laf@math.ucalgary.ca (C. Laflamme), pouzet@univ-lyon1.fr (M. Pouzet), nsauer@math.ucalgary.ca (N. Sauer),

imed_zaguia@hotmail.com, zaguia@rmc.ca (I. Zaguia).

http://dx.doi.org/10.1016/j.disc.2014.07.005
0012-365X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2014.07.005
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2014.07.005&domain=pdf
mailto:laf@math.ucalgary.ca
mailto:pouzet@univ-lyon1.fr
mailto:nsauer@math.ucalgary.ca
mailto:imed_zaguia@hotmail.com
mailto:zaguia@rmc.ca
http://dx.doi.org/10.1016/j.disc.2014.07.005


36 C. Laflamme et al. / Discrete Mathematics 335 (2014) 35–44

Let us say few words about the history of this notion of orthogonality and our motivation.
The notion of orthogonality originates in the theory of clones. The first examples of pairs of orthogonal finite orders

were given by Demetrovics, Miyakawa, Rosenberg, Simovici and Stojmenović [5]; those orders were in fact bipartite. More
examples can be found in [6]. Nozaki, Miyakawa, Pogosyan and Rosenberg [19] investigated the existence of a linear order
orthogonal to a given finite linear order. They observed that there is always one provided that the number of elements is
not equal to three and proved:

Theorem 3 ([19]). The proportion q(n)/n! of linear orders orthogonal to the natural order on [n] := {1, . . . , n} goes to e−2
=

0.1353 . . . when n goes to infinity.

Their counting argument was based on the fact that two linear orders on the same finite set are orthogonal if and
only if they do not have a common nontrivial interval. The notion capturing the properties of intervals of a linear order
was extended long ago to posets, graphs and binary structures and a decomposition theory has been developed (e.g. see
[9,12,10,7]). One of the terms in use for this notion is autonomous set; structures with no nontrivial autonomous subset –
the building blocks in the decomposition theory – are called prime (or indecomposable).With this terminology, the above fact
can be expressed by saying that two linear orders L and M on the same finite set V are orthogonal if and only if the binary
structure B := (V , L, M), that we call a bichain, is prime. This leads to results relating primality and orthogonality [22,25].

The notion of primality has reappeared in recent years under a quite different setting: a study of permutationsmotivated
by the Stanley–Wilf conjecture, now settled byMarcus and Tardös [17]. This study, which developed inmany papers, can be
presented as follows: To a permutation σ on [n] associate first the linear order ≤σ defined by x≤σ y if σ(x) ≤ σ(y) for the
natural order on [n]; next associate the bichain Bσ := ([n], (≤, ≤σ )). On the setS := ∪n∈N Sn of all permutations, set σ ≤ τ
if Bσ is embeddable into Bτ . Say that a subset C of S is hereditary if σ ≤ τ and τ ∈ C imply σ ∈ C. The goal is to evaluate
the growth rate of the function ϕC which counts for each integer n the numbers ϕC(n) of permutations σ on [n] which
belong to C (the Stanley–Wilf conjecture asserted that ϕC is bounded by an exponential if C ≠ S). For this purpose, simple
permutations were introduced. A permutation σ is simple if ≤σ and the natural order ≤ on [n] have no nontrivial interval
in common. Arbitrary permutations being obtained by means of simple permutations, the enumeration of permutations
belonging to a hereditary class of permutations can be then reduced to the enumeration of simple permutations belonging
to that class. This fact was illustrated inmany papers ([1,15], see also [4] for a survey on simple permutations and [2], where
the asymptotic result mentioned in Theorem 3 is rediscovered). Notably, Albert and Atkinson [1] proved that the generating
series


n∈N ϕC(n)zn is algebraic provided that C contains only finitely many simple permutations. They asked for possible

extensions of their result to hereditary sets containing infinitely many simple permutations.
Tools of the theory of relations provide easy ways to produce examples of hereditary sets containing infinitely many

simple permutations (but not to answer the Albert–Atkinson question), see e.g. [20]. Let us say that a subset C of S is an
ideal if it is non-empty, hereditary and up-directed, this last conditionmeaning that every pair σ , σ ′

∈ C has an upper bound
τ ∈ C. Let us call age of a bichain B the set age(B) := {σ ∈ S : Bσ is embeddable into B}. Then, a subset C of S is an
ideal if and only if C is the age of some bichain B. Furthermore, an ideal C is the age of a prime bichain if and only if every
permutation belonging to C is dominated by some simple permutation belonging to C (these statements, which hold in the
more general context of the theory of relations, are respectively due to Fraïssé [11] and Ille [13]). Because of these results,
the study of ideals leads to the study of countable prime bichains. It is then natural to ask which are the possible pairs of
order types of linear orders with this property. Now, it must be noticed that in the infinite case, primality and orthogonality
no longer coincide. Thus, the next question is about pairs of orthogonal linear orders. In [24] it was proved that the chain of
the rational numbers admits an orthogonal linear order of the same order type. Here we examine the case of countable well
ordered chains.

2. Basic notations and results

Let V be a set. A binary relation on V is a subset ρ of the Cartesian product V × V , but for convenience we write xρy
instead of (x, y) ∈ ρ. A map f : V → V preserves ρ if:

xρy ⇒ f (x)ρf (y)

for all x, y ∈ V .
These two notions are enough to present our results. In order to prove them, we will need a bit more.
A binary structure is a pair R := (V , (ρi)i∈I) where V is a set and each ρi is a binary relation on V . If F is a subset of V , the

restriction of R to F is R�F := (F , ((F × F) ∩ ρi)i∈I). If R := (V , (ρi)i∈I) and R′
:= (V ′, (ρ ′

i )i∈I) are two binary structures, a
homomorphism of R into R′ is a map f : V → V ′ such that the implication

xρiy ⇒ f (x)ρ ′

i f (y) (1)

holds for every x, y ∈ V , i ∈ I . If f is one-to-one and implication (1) above is a logical equivalence, this is an embedding. If
R = R′, a homomorphism is an endomorphism. We will denote by R ≤ R′ the fact that there is an embedding of R into R′ and
by R≤fin R′ the fact that R�(V\F) ≤ R′ for some finite subset F of V .
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