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i°(G) is the smallest number of guards required to protect G against an arbitrary sequence
of such simultaneous attacks.

We consider the problem of determining classes of k-i-protectable graphs. We intro-
duce a colouring scheme called multicolourings as aid to determine whether a graph is
k-i-protectable, and to describe a protection strategy if it is.
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i-protecting set We show that any well-covered graph (i.e., all maximal independent sets have the
Multicolouring independent domination same cardinality k) is k-i-protectable, even cycles in general are 1-i-protectable but not 2-i-
Eternal domination protectable, and odd cycles in general are 2-i-protectable but not 3-i-protectable. We char-

acterize k-i-protectable trees and give methods to construct larger k-i-protectable graphs
from smaller ones.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graph protection involves the deployment of defense units, such as guards, surveillance or broadcasting equipment,
emergency services, etc., at strategic locations in a network, that is, at the vertices of a graph, two vertices being adjacent
if the corresponding positions in the network are, in some appropriate sense, reachable from each other. The defense units
move across edges of the graph to other vertices to deal with an event, such as an attack, a burglary, a fire, a medical or other
emergency; every vertex of the graph must have access to a defense unit in this way.

A variety of protection models have been studied. Cases where defenders return to their original positions after dealing
with an event before facing subsequent events include Roman domination, first studied in its modern reincarnation in [7],
weak Roman domination [15] and secure domination [4].

We focus on securing the vertices of graphs against infinite sequences of events, henceforth called attacks, by stationing
defense units, henceforth called guards, at the vertices. At most one guard is stationed at each vertex, and guards that move
in response to an attack do not return to their original positions before facing another attack. We refer to such models as
eternal, as they can be thought of as protecting a graph for eternity. A number of different eternal protection models have
been studied.

For a finite, undirected graph G = (V, E), let {D;}, D; C V, i > 1, be a collection of sets of vertices of the same cardinality,
with initially one guard located on each vertex of D,. Each protection strategy can be modelled as a two-player game between
a defender and an attacker: the defender chooses D; as well as each D;, i > 1, while the attacker chooses the locations of the
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attacks ry, r», . ... Each attack is dealt with by the defender by choosing the next D; subject to some constraints that depend
on the particular game. The defender wins the game if they can successfully defend any sequence of attacks, subject to the
constraints of the game described below; the attacker wins otherwise.

A vertex is protected if there is a guard on the vertex or on an adjacent vertex. A vertex v is occupied if there is a guard on
v, otherwise v is unoccupied. An attack is defended if a guard moves to the attacked vertex.

For the eternal domination problem, each D;,i > 1, is a dominating set, r; € V (assume without loss of generality
1; & D;), and D;, is obtained from D; by moving one guard to r; from an adjacent vertex v € D;. If the defender can win the
game with the sets {D;}, then each D; is an eternal dominating set. The size of a smallest eternal dominating set of G is the
eternal domination number y*°(G). This model, also referred to as the one-guard moves model, protects a graph against an
infinite sequence of attacks executed one at a time and was first studied by Burger et al. in [5].

The m-eternal domination problem, which was introduced by Goddard et al. [10], is similar to the eternal domination
problem, except that any number of guards may move in response to an attack (again occurring at a single vertex), as long as
one guard moves to the attacked vertex. This model is also referred to as the all-guards move model of eternal domination.
Other work on eternal and m-eternal domination include [1,2,8,9,11,12,16-22]. A recent survey of graph protection is given
in[23].

Here we consider the independent protection problem, where each D;,i > 1, is an independent dominating set,
r; € V — D;, and Dy is obtained from D; by moving any number of guards, each across an edge, one of them to r;. Thus
one guard moves to the attacked vertex, and other guards move to maintain an independent dominating set. If an already
occupied vertex is attacked, its guard deals with the attack without moving. The independent protection number i (G) is the
smallest number of guards required to protect the graph G against an arbitrary sequence of attacks, and if i°(G) exists, then
G is said to be independent-protectable, abbreviated to i-protectable. For example, the cycle C, is i-protectable: place guards
on a maximal independent (i.e., independent dominating) set of cardinality H—| and rotate the guards in an obvious way to

deal with an attack at an unguarded vertex. Hence i(C,) = [ 1 ].

We also consider the k-independent protection problem, which is similar to the independent protection problem,
except that several vertices of an independent set can be attacked simultaneously and any number of guards may move, one
guard to each attacked vertex that is not already occupied, and other guards to maintain an independent set. For example,
two guards on nonadjacent vertices of Cs can handle simultaneous attacks on any two nonadjacent vertices repeatedly
by rotating clockwise or counterclockwise. The k-independent protection number i;°(G) is the smallest number of guards
required to protect G against an arbitrary sequence of simultaneous attacks on up to k independent vertices, and if i;°(G)
exists, then G is said to be k-i-protectable. As another example, consider C; = vy, vy, ..., Ug, Vg, let D = {vg, v,, v4}, and
place a guard on each vertex in D. Attack the vertices in an independent set S with |S| = 3.If |S — D| = 1, then the guards
can be rotated to an independent set D’ as in the case of a single attack. If |S — D| = 2, then by symmetry we may assume
that S — D = {vq, vs} or {vq, vg}, and either a clockwise or a counterclockwise rotation of the guards moves them to an
independent set D’ containing S. Similarly, if D NS = &, then (without loss of generality) S = {v;, vs, vs}, and a suitable
rotation of the guards to D' = S deals with the attack. In each case there is an automorphism of C; that maps D to D',
hence this protection strategy can be repeated indefinitely. Hence C; is 3-i-protectable and i$°(C;) = 3. We return to (; in
Sections 3.1 and 3.2.

It is clear that if G is k-i-protectable for some integer k, then G is k’-i-protectable for each k’ such that 1 < k' < k, and
i’ (G) < i;°(G).1f Gis k-i-protectable and S is a set of vertices such that guards placed on these vertices can protect G against
any sequence of attacks, then S is called a k-i-protecting set.

Our aim is to consider the following problem.

Problem 1. Determine the classes of k-i-protectable graphs, k > 1.

After more definitions in Section 2 we consider existence and non-existence results in Section 3. We describe a colouring
scheme as aid to determine whether a graph is k-i-protectable and to describe a protection strategy if it is. We show that well-
covered graphs are o-i-protectable (Section 3.1), and non-well-covered graphs G are not i(G)-i-protectable (Section 3.2).
Bipartite graphs with perfect matchings are i-protectable, as are some without perfect matchings, and the differences
between i*°(G) and i(G), and «(G) and i*(G), can be arbitrary (Section 3.3). Trees are i-protectable if and only if they have
perfect matchings, and k-i-protectable for k > 1 if and only if they are well-covered (Section 3.4). The Petersen graph and
other non-well-covered k-i-protectable graphs are discussed in Section 3.5. Methods for constructing larger k-i-protectable
graphs from smaller ones are given in Section 4, and we close with open questions in Section 5.

2. Definitions and notation

We consider simple, undirected graphs G = (V, E) and, in general, follow the notation of [6]. We denote the cardinalities
of a smallest and a largest maximal independent set of vertices of G by i(G) (the independent domination number) and o« (G)
(the independence number), respectively. It is well known that an independent set is maximal independent if and only if
it is a dominating set [3]. A maximal independent set of cardinality i(G) («(G), respectively) is called an i-set(an «-set,
respectively).

A graph is well-covered if i(G) = «(G), i.e., if all maximal independent sets have the same cardinality. The problem of
characterizing well-covered graphs was proposed by Plummer [24] and was partly motivated by the observation that while
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