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a b s t r a c t

For which α there are first order graph statements A of given quantifier depth k such that
a Zero–One law does not hold for the random graph G(n, p(n)) with p(n) at or near (there
are two notions) n−α? A fairly complete description is given in both the near dense (α near
zero) and near linear (α near one) cases.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Asymptotic behavior of first-order properties probabilities of the Erdős–Rényi random graph G(n, p) have been widely
studied in [7,3,12,9,8,13,16,15,17,18,27,11,21,20,22,24–26] (especially, the surveys [18,27] contain a description of all the
main respective results). In [13] Shelah and the senior author showed that when α is an irrational number and p(n) =

n−α+o(1) then G(n, p) obeys a Zero–One Law. (To avoid trivialities we shall restrict ourselves to 0 < α < 1.) In a series
of papers [21,20,22,24–26] the junior author has examined when there is a Zero–One Law for all first order sentences of
quantifier depth at most k. (In such cases we say that G(n, p) obeys Zero–One k-Law.) We here consider two notions of
spectra, relative to k.

We assume familiarity with the Erdős–Rényi random graph G(n, p) and of threshold functions (see [27,10,4,1]). We
further assume familiarity with the first order language for graphs (see [18,27,2,5,19]). The quantifier depth of a sentence L
is the number of nested quantifiers [27,19]. We let Lk denote the set of sentences Lwith quantifier depth at most k.

As illustrative examples, the existence of a K4 has threshold function n−2/3. The property that every pair x1, x2 of vertices
have a common neighbor y has threshold function n−1/2

√
ln n.

For any first order property Lwedefine two notions of its spectra, S1(L) and S2(L). The first considers behavior at p = n−α .
S1(L) is the set of α ∈ (0, 1) which do not satisfy the following property: With p(n) = n−α , limn→∞ Pr[G(n, p(n)) |H L]
exists and is either zero or one. The second considers behavior near p = n−α . S2(L) is the set of α ∈ (0, 1) which do not
satisfy the following property: There exists ϵ > 0 so that for any n−α−ϵ < p(n) < n−α+ϵ , limn→∞ Pr[G(n, p(n)) |H L] = δ
exists, is either zero or one, and is independent of the choice of p(n).

Tautologically S1(L) ⊂ S2(L) but we need not have equality. Letting L be the sentence that every two vertices have a
common neighbor, S2(L) = {

1
2 } while S1(L) = ∅.
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Definition 1. Let k ≥ 1. S1k is the union of all S1(L) where L ∈ Lk. S2k is the union of all S2(L) where L ∈ Lk.

A full description of S1k and S2k appears difficult. Our main (though not only) concern shall be the values α of S1k and S2k
that lie either near zero or near one.

2. Previous results

Theorem 2 ([13]). Every S2(L) consists only of rational values α (as S1(L) ⊆ S2(L), the same is true for S1(L)). Moreover,
L∈L S1(L) = Q ∩ (0, 1).

In [21,20,22,24,25] some rational points from the set (0, 1) \ S1k were obtained.

Theorem 3 ([21]). Let k ≥ 3 be an arbitrary natural number. If α ∈ (0, 1
k−2 ) then the random graph G(n, n−α) obeys Zero–One

k-Law. Moreover, 1
k−2 ∈ S1k .

From this result it follows that the minimal number in S1k equals 1
k−2 . We also obtain the maximal number in S1k .

Theorem 4 ([22]). Let k > 3 be an arbitrary natural number. Let Q be the set of positive rational numbers with the numerator
less than or equal to 2k−1. The random graph G(n, n−α) obeys the Zero–One k-Law, if α = 1−

1
2k−1+β

, β ∈ (0, ∞)\Q. Moreover,

for any β ∈ {1, . . . , 2k−1
− 2}

1 −
1

2k−1 + β
∈ S1k .

Note that this result implies the following statement. For any k > 3, α > 1 −
1

2k−2
, the random graph G(n, n−α) obeys

the Zero–One k-Law, if α ∉ {1 −
1
2k

, 1 −
1

2k−1
}. However, the maximal α such that G(n, n−α) obeys the Zero–One k-Law is

known.

Theorem 5 ([24]). Let k > 3 be an arbitrary natural number. Moreover, let α ∈ {1 −
1
2k

, 1 −
1

2k−1
}. Then the random graph

G(n, n−α) obeys the Zero–One k-Law.

Hence the maximal number in S1k equals 1 −
1

2k−2
.

Recently, we extend the subset of the set Q from Theorem 4 such that for any β from this subset 1 −
1

2k−1+β
∈ S1k .

Theorem 6 ([26]). Let k > 4 be an arbitrary natural number. Moreover, let α = 1 −
1

2k−1+β
, where β =

a
b is an irreducible

positive fraction with a ∈ {1, 2, . . . , 2k−1
− (b + 1)2}. Then α ∈ S1k .

In [15] it was proved that sets S1k and S2k are infinite when k is large enough.

Theorem 7 ([15]). There exists k0 such that for any natural k > k0 sets S1k and S2k are infinite.

There are, up to tautological equivalence, (see, e.g., [19]) only a finite number of first order sentences of a given quantifier
depth. Thus, for j either 1 or 2, set S jk is infinite if and only if there is a single L of quantifier depth at most k such that S j(L) is
infinite. Therefore, we always search for one property with infinite spectrumwhenwe prove that the spectrum S jk is infinite.

It is also known [17] that all limit points of S1k and S2k are approached only from above.

Theorem 8 ([17]). For any k ∈ N the set S2k is well-ordered under >.

Consequently, the set S1k follows the same property.
In this paper we try to answer the following questions.

Q1 What are the maximal and the minimal numbers in S2k ?
Q2 Let k be large enough so that sets S1k and S2k are infinite. What are the maximal and the minimal limit points in S1k and

S2k ?
Q3 Howmany elements are there in S1k and S2k near their minimal elements (the answer on this question for themaximal el-

ements is given in Theorem 6:
S jk ∩


1 −

1
2k−1 , 1

 = Ω(23k/2) for j ∈ {1, 2})? Consider, say, the interval I =

0, 1

k−2.5


.

How many elements are there in S jk ∩ I , j ∈ {1, 2}?
Q4 For each j ∈ {1, 2} what is the minimal k such that S jk is infinite?

3. New results

For any natural kwe find the maximal and the minimal numbers in S2k and, therefore, answer the question Q1.

Theorem 9. If k > 3, then min S2k =
1

k−1 , max S2k = 1 −
1

2k−2
. Moreover, S23 = {

1
2 ,

2
3 }.
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