Bounded quantifier depth spectra for random graphs

J.H. Spencer ${ }^{\text {a }}$, M.E. Zhukovskii ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Courant Institute, New York University, United States
${ }^{\mathrm{b}}$ Moscow Institute of Physics and Technology, Russian Federation

A R TICLE INFO

Article history:

Received 13 January 2015
Received in revised form 1 August 2015
Accepted 8 January 2016
Available online 17 February 2016

Keywords:

Random graphs
Zero-one laws
First-order logic
Spectra

Abstract

For which α there are first order graph statements A of given quantifier depth k such that a Zero-One law does not hold for the random graph $G(n, p(n)$) with $p(n)$ at or near (there are two notions) $n^{-\alpha}$? A fairly complete description is given in both the near dense (α near zero) and near linear (α near one) cases.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Asymptotic behavior of first-order properties probabilities of the Erdős-Rényi random graph $G(n, p)$ have been widely studied in [7,3,12,9,8,13,16,15,17,18,27,11,21,20,22,24-26] (especially, the surveys [18,27] contain a description of all the main respective results). In [13] Shelah and the senior author showed that when α is an irrational number and $p(n)=$ $n^{-\alpha+o(1)}$ then $G(n, p)$ obeys a Zero-One Law. (To avoid trivialities we shall restrict ourselves to $0<\alpha<1$.) In a series of papers [21,20,22,24-26] the junior author has examined when there is a Zero-One Law for all first order sentences of quantifier depth at most k. (In such cases we say that $G(n, p)$ obeys Zero-One k-Law.) We here consider two notions of spectra, relative to k.

We assume familiarity with the Erdős-Rényi random graph $G(n, p)$ and of threshold functions (see [27,10,4,1]). We further assume familiarity with the first order language for graphs (see [18,27,2,5,19]). The quantifier depth of a sentence L is the number of nested quantifiers $[27,19]$. We let \mathscr{L}_{k} denote the set of sentences L with quantifier depth at most k.

As illustrative examples, the existence of a K_{4} has threshold function $n^{-2 / 3}$. The property that every pair x_{1}, x_{2} of vertices have a common neighbor y has threshold function $n^{-1 / 2} \sqrt{\ln n}$.

For any first order property L we define two notions of its spectra, $S^{1}(L)$ and $S^{2}(L)$. The first considers behavior at $p=n^{-\alpha}$. $S^{1}(L)$ is the set of $\alpha \in(0,1)$ which do not satisfy the following property: With $p(n)=n^{-\alpha}, \lim _{n \rightarrow \infty} \operatorname{Pr}[G(n, p(n)) \models L]$ exists and is either zero or one. The second considers behavior near $p=n^{-\alpha}$. $S^{2}(L)$ is the set of $\alpha \in(0,1)$ which do not satisfy the following property: There exists $\epsilon>0$ so that for any $n^{-\alpha-\epsilon}<p(n)<n^{-\alpha+\epsilon}, \lim _{n \rightarrow \infty} \operatorname{Pr}[G(n, p(n)) \models L]=\delta$ exists, is either zero or one, and is independent of the choice of $p(n)$.

Tautologically $S^{1}(L) \subset S^{2}(L)$ but we need not have equality. Letting L be the sentence that every two vertices have a common neighbor, $S^{2}(L)=\left\{\frac{1}{2}\right\}$ while $S^{1}(L)=\emptyset$.

[^0]Definition 1. Let $k \geq 1 . S_{k}^{1}$ is the union of all $S^{1}(L)$ where $L \in \mathscr{L}_{k} . S_{k}^{2}$ is the union of all $S^{2}(L)$ where $L \in \mathscr{L}_{k}$.
A full description of S_{k}^{1} and S_{k}^{2} appears difficult. Our main (though not only) concern shall be the values α of S_{k}^{1} and S_{k}^{2} that lie either near zero or near one.

2. Previous results

Theorem 2 ([13]). Every $S^{2}(L)$ consists only of rational values α (as $S^{1}(L) \subseteq S^{2}(L)$, the same is true for $S^{1}(L)$). Moreover, $\bigcup_{L \in \mathcal{L}} S^{1}(L)=\mathbb{Q} \cap(0,1)$.

In $[21,20,22,24,25]$ some rational points from the set $(0,1) \backslash S_{k}^{1}$ were obtained.
Theorem 3 ([21]). Let $k \geq 3$ be an arbitrary natural number. If $\alpha \in\left(0, \frac{1}{k-2}\right)$ then the random graph $G\left(n, n^{-\alpha}\right)$ obeys Zero-One k-Law. Moreover, $\frac{1}{k-2} \in S_{k}^{1}$.

From this result it follows that the minimal number in S_{k}^{1} equals $\frac{1}{k-2}$. We also obtain the maximal number in S_{k}^{1}.
Theorem 4 ([22]). Let $k>3$ be an arbitrary natural number. Let \mathcal{Q} be the set of positive rational numbers with the numerator less than or equal to 2^{k-1}. The random graph $G\left(n, n^{-\alpha}\right)$ obeys the Zero-One k-Law, if $\alpha=1-\frac{1}{2^{k-1}+\beta}, \beta \in(0, \infty) \backslash Q$. Moreover, for any $\beta \in\left\{1, \ldots, 2^{k-1}-2\right\}$

$$
1-\frac{1}{2^{k-1}+\beta} \in S_{k}^{1}
$$

Note that this result implies the following statement. For any $k>3, \alpha>1-\frac{1}{2^{k}-2}$, the random graph $G\left(n, n^{-\alpha}\right)$ obeys the Zero-One k-Law, if $\alpha \notin\left\{1-\frac{1}{2^{k}}, 1-\frac{1}{2^{k}-1}\right\}$. However, the maximal α such that $G\left(n, n^{-\alpha}\right)$ obeys the Zero-One k-Law is known.
Theorem 5 ([24]). Let $k>3$ be an arbitrary natural number. Moreover, let $\alpha \in\left\{1-\frac{1}{2^{k}}, 1-\frac{1}{2^{k}-1}\right\}$. Then the random graph $G\left(n, n^{-\alpha}\right)$ obeys the Zero-One k-Law.

Hence the maximal number in S_{k}^{1} equals $1-\frac{1}{2^{k}-2}$.
Recently, we extend the subset of the set \mathcal{Q} from Theorem 4 such that for any β from this subset $1-\frac{1}{2^{k-1}+\beta} \in S_{k}^{1}$.
Theorem 6 ([26]). Let $k>4$ be an arbitrary natural number. Moreover, let $\alpha=1-\frac{1}{2^{k-1}+\beta}$, where $\beta=\frac{a}{b}$ is an irreducible positive fraction with $a \in\left\{1,2, \ldots, 2^{k-1}-(b+1)^{2}\right\}$. Then $\alpha \in S_{k}^{1}$.

In [15] it was proved that sets S_{k}^{1} and S_{k}^{2} are infinite when k is large enough.
Theorem 7 ([15]). There exists k_{0} such that for any natural $k>k_{0}$ sets S_{k}^{1} and S_{k}^{2} are infinite.
There are, up to tautological equivalence, (see, e.g., [19]) only a finite number of first order sentences of a given quantifier depth. Thus, for j either 1 or 2 , set S_{k}^{j} is infinite if and only if there is a single L of quantifier depth at most k such that $S^{j}(L)$ is infinite. Therefore, we always search for one property with infinite spectrum when we prove that the spectrum S_{k}^{j} is infinite.

It is also known [17] that all limit points of S_{k}^{1} and S_{k}^{2} are approached only from above.
Theorem 8 ([17]). For any $k \in \mathbb{N}$ the set S_{k}^{2} is well-ordered under $>$.
Consequently, the set S_{k}^{1} follows the same property.
In this paper we try to answer the following questions.
Q1 What are the maximal and the minimal numbers in S_{k}^{2} ?
Q2 Let k be large enough so that sets S_{k}^{1} and S_{k}^{2} are infinite. What are the maximal and the minimal limit points in S_{k}^{1} and S_{k}^{2} ?
Q3 How many elements are there in S_{k}^{1} and S_{k}^{2} near their minimal elements (the answer on this question for the maximal elements is given in Theorem 6: $\left|S_{k}^{j} \cap\left(1-\frac{1}{2^{k-1}}, 1\right)\right|=\Omega\left(2^{3 k / 2}\right)$ for $\left.j \in\{1,2\}\right)$? Consider, say, the interval $I=\left(0, \frac{1}{k-2.5}\right)$. How many elements are there in $S_{k}^{j} \cap I, j \in\{1,2\}$?
Q4 For each $j \in\{1,2\}$ what is the minimal k such that S_{k}^{j} is infinite?

3. New results

For any natural k we find the maximal and the minimal numbers in S_{k}^{2} and, therefore, answer the question Q1.
Theorem 9. If $k>3$, then $\min S_{k}^{2}=\frac{1}{k-1}, \max S_{k}^{2}=1-\frac{1}{2^{k}-2}$. Moreover, $S_{3}^{2}=\left\{\frac{1}{2}, \frac{2}{3}\right\}$.

https://daneshyari.com/en/article/4647051

Download Persian Version:

https://daneshyari.com/article/4647051

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: zhukmax@gmail.com (M.E. Zhukovskii).

