Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

An extremal problem for vertex partition of complete multipartite graphs

Tomoki Nakamigawa

Department of Information Science, Shonan Institute of Technology, 1-1-25 Tsujido-Nishikaigan, Fujisawa, Kanagawa 251-8511, Japan

ARTICLE INFO

Article history: Received 7 March 2014 Received in revised form 4 November 2015 Accepted 21 January 2016 Available online 18 February 2016

Keywords: Extremal graph theory Graph Ramsey theory Graph decomposition

ABSTRACT

For a graph *G* and a family \mathcal{H} of graphs, a vertex partition of *G* is called an \mathcal{H} -decomposition, if every part induces a graph isomorphic to one of \mathcal{H} . For $1 \leq a \leq k$, let A(k, a) denote the graph which is a join of an empty graph of order *a* and a complete graph of order k - a. Let $\mathcal{A}_k = \{A(k, a) : 1 \leq a \leq k\}$. In this paper, extremal problems related to \mathcal{H} -decomposition of a complete multipartite graph, where $\mathcal{H} \subset \mathcal{A}_k$, are studied. Among other results, it is proved that for every complete multipartite graph *G* of order $k\ell$, where $\ell \geq k - 2 \geq 2$, there is a positive integer *a* such that *G* admits an $\{A(k, a), A(k, a + 1), A(k, a + 2)\}$ -decomposition.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A graph is finite and undirected with no multiple edges or loops. Let \mathcal{H} be a family of graphs. For a graph G, we call a vertex partition $V(G) = V_1 \cup \cdots \cup V_\ell$ an \mathcal{H} -decomposition, if $G[V_i] \in \mathcal{H}$ for all $1 \le i \le \ell$, where $G[V_i]$ is a subgraph of G induced by V_i . In the following, we mainly consider the case where G is a complete multipartite graph and \mathcal{H} consists of graphs with a common number of vertices.

Our aim is to find sufficient conditions for the existence of an \mathcal{H} -decomposition having some nice properties. The problems raised in the paper can be considered as a coin problem. Let a set of piles of coins be given. A pile of coins corresponds to a partite set of complete multipartite graph, and a rearrangement of coins corresponds to a vertex partition of a complete multipartite graph.

The next results were proved in [3,4].

Theorem A ([3]). For every complete multipartite graph *G* of order $(k + 1)\ell - 1$, where $\ell \ge k - 2$, there is an induced subgraph *G'* of order $k\ell$ such that *G'* admits an {H}-decomposition with some complete multipartite graph H of order k.

Theorem B ([4]). For every complete multipartite graph G of order $k\ell$, where $k \ge 2$ and $\ell \ge 2$, there is a pair of complete multipartite graphs H_1 , H_2 of order k such that G admits an $\{H_1, H_2\}$ -decomposition.

In the following, $K_{n_1,n_2,...,n_s}$ is denoted by $(n_1, n_2, ..., n_s)$. Furthermore, if t partite sets have a common order a, we write as $(..., a^t, ...)$ instead of (..., a, a, ..., a, ...). In particular, (n) denotes the empty graph of order n, and (1^n) denotes the complete graph of order n.

Let $A_k = \{(a, 1^{k-a}) : 1 \le a \le k\}$. A_k is a family of graphs of order k which consists of a complete graph (1^k) , and an empty graph (k) and joins of a complete graph and an empty graph. In this paper, we focus on an \mathcal{H} -decomposition, where $\mathcal{H} \subset A_k$.

CrossMark

E-mail address: nakami@info.shonan-it.ac.jp.

http://dx.doi.org/10.1016/j.disc.2016.01.012 0012-365X/© 2016 Elsevier B.V. All rights reserved.

2. Main results

In this section, we present the main results of the paper. The proofs will be given in Section 3. Firstly, we have the following result.

Theorem 1. For every complete multipartite graph G of order $k\ell$, where $\ell \ge k - 2 \ge 2$, there is a positive integer a such that G admits an $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\}$ -decomposition.

The next statement is an immediate consequence of Theorem 1.

Corollary 2. Every complete multipartite graph G of order $k\ell$, where $\ell \ge k-2 \ge 2$, admits an \mathcal{A}_k -decomposition.

The bound for ℓ in Corollary 2 (and also in Theorem 1) is tight. To see this, consider the complete bipartite graph $G = ((k-1)\ell - 1, k-2)$ with $\ell = k-3$ and $k \ge 4$. Then *G* has order $k\ell$, but *G* has no A_k -decomposition. Assume to the contrary that *G* has an A_k -decomposition. Then *G* has a $\{(k), (k-1, 1)\}$ -decomposition, since *G* has only two partite sets and contains no copy of $(a, 1^{k-a})$ for $1 \le a \le k-2$. However, this is impossible, since *G* has at most $\ell - 1$ vertex disjoint copies of (k-1).

A related result of Theorem 1 is as follows.

Theorem 3. Let *G* be a complete multipartite graph of order $k\ell$. Then the following statements hold:

(a) If k = 3, then G has a {(2, 1), (3)}-decomposition or {(1³), (2, 1)}-decomposition.

(b) If $k \ge 4$ and $\ell \ge 2k - 6$, then there is a positive integer a such that G admits an $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)})\}$ -decomposition.

The bound for ℓ in Theorem 3(b) is tight. To see this, consider the complete multipartite graph G = ((k - 1) (k-3)-1, (k-1)(k-3)-1, k-4) with $\ell = 2k-7$ and $k \ge 4$. Then G has order $k\ell$, but G has no $\{(a, 1^{k-a}), (a+1, 1^{k-(a+1)})\}$ -decomposition. For k = 4, then G = (2, 2) has clearly no A_k -decomposition. For $k \ge 5$, let P_1, P_2 and P_3 be three partite sets of G with $|P_1| = |P_2| = (k-3)(k-1) - 1$ and $|P_3| = k-4$. Suppose to the contrary that G has an $\{(a, 1^{k-a}), (a+1, 1^{k-(a+1)})\}$ -decomposition. Since G has only three partite sets, we have $a \ge k-2$. Furthermore, since G contains at most $\ell - 1$ vertex disjoint copies of (k-1), we have a = k-2. Without loss of generality, we may assume P_1 is partitioned into k-3 copies of (k-2) and P_2 is partitioned into k-4 copies of (k-2). However, this is impossible, since the number of the remaining vertices of P_2 is (k-1)(k-3) - 1 - (k-4)(k-2) = 2k - 6, which is greater than ℓ .

If every complete multipartite graph of order $k\ell$ admits an \mathcal{H} -decomposition, where \mathcal{H} is a family of graphs each of which has order k, then we need $\{(k), (k-1, 1)\} \subset \mathcal{H}$ for $G = (k\ell - 1, 1)$ and also need $(1^k) \in \mathcal{H}$ for $G = (1^{k\ell})$. Conversely, these three graphs $(k), (k-1, 1), (1^k)$ suffice when ℓ is sufficiently large.

Theorem 4. Every complete multipartite graph of order $k\ell$, where $k \ge 4$ and $\ell \ge (k-2)^2$, admits a $\{(k), (k-1, 1), (1^k)\}$ -decomposition.

The bound for ℓ in Theorem 4 is tight. To see this, consider the multipartite graph $G = ((k - 1)\ell - 1, (k - 2)^{k-2})$ with $\ell = (k - 2)^2 - 1$ and $k \ge 4$. Then G has order $k\ell$, but G has no $\{(k), (k - 1, 1), (1^k)\}$ -decomposition. Assume to the contrary that G has a $\{(k), (k - 1, 1), (1^k)\}$ -decomposition. Then G has a $\{(k), (k - 1, 1)\}$ -decomposition, since G has no copy of (1^k) . However, this is impossible, since G has at most $\ell - 1$ vertex disjoint copies of (k - 1).

Theorem 5. Let G be a complete multipartite graph of order $k\ell$. Then the following statements hold:

(a) If k = 3, then G has a {(3), (2, 1)}-decomposition or a {(3), (1³)}-decomposition.

(b) If $k \ge 4$ and $\ell \ge \frac{1}{2}(3k^2 - 9k + 4)$, then G has a {(k), (k - 1, 1)}-decomposition or a {(k), (1^k) }-decomposition.

The bound for ℓ in Theorem 5(b) is tight. To see this, consider the multipartite graph $G = (k(k-1)(k-3) - 1, (k-1)^2 - 1, (k-2)(k-1) - 1, (k-3)(k-1) - 1, \dots, 2(k-1) - 1, 1^{(k^2-k-4)/2})$ with $\ell = (1/2)(3k^2 - 9k + 2)$ and $k \ge 4$. Then G has order $k\ell$, but G has neither $\{(k), (k-1, 1)\}$ -decomposition nor $\{(k), (1^k)\}$ -decomposition.

Firstly, we will show that G has no $\{(k), (k - 1, 1)\}$ -decomposition. The maximum number of vertex disjoint copies of (k - 1) in G is

$$k(k-3) - 1 + \sum_{i=1}^{k-2} i = \frac{1}{2}(3k^2 - 9k) < \ell.$$

Hence, *G* has no $\{(k), (k - 1, 1)\}$ -decomposition.

Next, we will show that G has no $\{(k), (1^k)\}$ -decomposition. Note that the maximum number of vertex disjoint copies of (k) in G is

$$(k-1)(k-3) - 1 + \sum_{i=1}^{k-2} i = \frac{1}{2}(3k^2 - 11k + 6) = \ell - k + 2.$$

Download English Version:

https://daneshyari.com/en/article/4647056

Download Persian Version:

https://daneshyari.com/article/4647056

Daneshyari.com