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a b s t r a c t

For a graphG and a familyH of graphs, a vertex partition ofG is called anH-decomposition,
if every part induces a graph isomorphic to one of H . For 1 ≤ a ≤ k, let A(k, a) denote
the graph which is a join of an empty graph of order a and a complete graph of order
k − a. Let Ak = {A(k, a) : 1 ≤ a ≤ k}. In this paper, extremal problems related to
H-decomposition of a complete multipartite graph, where H ⊂ Ak, are studied. Among
other results, it is proved that for every complete multipartite graph G of order kℓ, where
ℓ ≥ k − 2 ≥ 2, there is a positive integer a such that G admits an {A(k, a), A(k, a + 1),
A(k, a + 2)}-decomposition.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A graph is finite and undirected with no multiple edges or loops. Let H be a family of graphs. For a graph G, we call a
vertex partition V (G) = V1 ∪ · · · ∪ Vℓ an H-decomposition, if G[Vi] ∈ H for all 1 ≤ i ≤ ℓ, where G[Vi] is a subgraph of
G induced by Vi. In the following, we mainly consider the case where G is a complete multipartite graph and H consists of
graphs with a common number of vertices.

Our aim is to find sufficient conditions for the existence of an H-decomposition having some nice properties. The
problems raised in the paper can be considered as a coin problem. Let a set of piles of coins be given. A pile of coins
corresponds to a partite set of complete multipartite graph, and a rearrangement of coins corresponds to a vertex partition
of a complete multipartite graph.

The next results were proved in [3,4].

Theorem A ([3]). For every complete multipartite graph G of order (k+ 1)ℓ− 1, where ℓ ≥ k− 2, there is an induced subgraph
G′ of order kℓ such that G′ admits an {H}-decomposition with some complete multipartite graph H of order k.

Theorem B ([4]). For every complete multipartite graph G of order kℓ, where k ≥ 2 and ℓ ≥ 2, there is a pair of complete
multipartite graphs H1, H2 of order k such that G admits an {H1,H2}-decomposition.

In the following, Kn1,n2,...,ns is denoted by (n1, n2, . . . , ns). Furthermore, if t partite sets have a common order a, we write
as (. . . , at , . . .) instead of (. . . , a, a, . . . , a, . . .). In particular, (n) denotes the empty graph of order n, and (1n) denotes the
complete graph of order n.

Let Ak = {(a, 1k−a) : 1 ≤ a ≤ k}. Ak is a family of graphs of order k which consists of a complete graph (1k), and an
empty graph (k) and joins of a complete graph and an empty graph. In this paper, we focus on an H-decomposition, where
H ⊂ Ak.
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2. Main results

In this section,wepresent themain results of the paper. Theproofswill be given in Section3. Firstly,wehave the following
result.

Theorem 1. For every complete multipartite graph G of order kℓ, where ℓ ≥ k − 2 ≥ 2, there is a positive integer a such that G
admits an {(a, 1k−a), (a + 1, 1k−(a+1)), (a + 2, 1k−(a+2))}-decomposition.

The next statement is an immediate consequence of Theorem 1.

Corollary 2. Every complete multipartite graph G of order kℓ, where ℓ ≥ k − 2 ≥ 2, admits an Ak-decomposition.

The bound for ℓ in Corollary 2 (and also in Theorem 1) is tight. To see this, consider the complete bipartite graph
G = ((k − 1)ℓ − 1, k − 2) with ℓ = k − 3 and k ≥ 4. Then G has order kℓ, but G has no Ak-decomposition. Assume
to the contrary that G has an Ak-decomposition. Then G has a {(k), (k − 1, 1)}-decomposition, since G has only two partite
sets and contains no copy of (a, 1k−a) for 1 ≤ a ≤ k−2. However, this is impossible, since G has atmost ℓ−1 vertex disjoint
copies of (k − 1).

A related result of Theorem 1 is as follows.

Theorem 3. Let G be a complete multipartite graph of order kℓ. Then the following statements hold:
(a) If k = 3, then G has a {(2, 1), (3)}-decomposition or {(13), (2, 1)}-decomposition.
(b) If k ≥ 4 and ℓ ≥ 2k − 6, then there is a positive integer a such that G admits an {(a, 1k−a), (a + 1,

1k−(a+1))}-decomposition.

The bound for ℓ in Theorem 3(b) is tight. To see this, consider the complete multipartite graph G = ((k − 1)
(k−3)−1, (k−1)(k−3)−1, k−4)with ℓ = 2k−7 and k ≥ 4. ThenG has order kℓ, butG has no {(a, 1k−a), (a+1, 1k−(a+1))}-
decomposition. For k = 4, then G = (2, 2) has clearly no Ak-decomposition. For k ≥ 5, let P1, P2 and P3 be three partite
sets of G with |P1| = |P2| = (k − 3)(k − 1) − 1 and |P3| = k − 4. Suppose to the contrary that G has an {(a, 1k−a),
(a + 1, 1k−(a+1))}-decomposition, Since G has only three partite sets, we have a ≥ k − 2. Furthermore, since G contains at
most ℓ − 1 vertex disjoint copies of (k− 1), we have a = k− 2. Without loss of generality, we may assume P1 is partitioned
into k − 3 copies of (k − 2) and P2 is partitioned into k − 4 copies of (k − 2). However, this is impossible, since the number
of the remaining vertices of P2 is (k − 1)(k − 3) − 1 − (k − 4)(k − 2) = 2k − 6, which is greater than ℓ.

If every complete multipartite graph of order kℓ admits an H-decomposition, where H is a family of graphs each of
which has order k, thenwe need {(k), (k−1, 1)} ⊂ H for G = (kℓ−1, 1) and also need (1k) ∈ H for G = (1kℓ). Conversely,
these three graphs (k), (k − 1, 1), (1k) suffice when ℓ is sufficiently large.

Theorem 4. Every complete multipartite graph of order kℓ, where k ≥ 4 and ℓ ≥ (k − 2)2, admits a {(k), (k − 1, 1),
(1k)}-decomposition.

The bound for ℓ in Theorem 4 is tight. To see this, consider the multipartite graph G = ((k − 1)ℓ − 1,
(k − 2)k−2) with ℓ = (k − 2)2 − 1 and k ≥ 4. Then G has order kℓ, but G has no {(k), (k − 1, 1), (1k)}-decomposition.
Assume to the contrary that G has a {(k), (k − 1, 1), (1k)}-decomposition. Then G has a {(k), (k − 1, 1)}-decomposition,
since G has no copy of (1k). However, this is impossible, since G has at most ℓ − 1 vertex disjoint copies of (k − 1).

Theorem 5. Let G be a complete multipartite graph of order kℓ. Then the following statements hold:
(a) If k = 3, then G has a {(3), (2, 1)}-decomposition or a {(3), (13)}-decomposition.
(b) If k ≥ 4 and ℓ ≥

1
2 (3k

2
− 9k + 4), then G has a {(k), (k − 1, 1)}-decomposition or a {(k), (1k)}-decomposition.

The bound for ℓ in Theorem5(b) is tight. To see this, consider themultipartite graphG = (k(k−1)(k−3)−1, (k−1)2−1,
(k− 2)(k− 1) − 1, (k− 3)(k− 1) − 1, . . . , 2(k− 1) − 1, 1(k2−k−4)/2) with ℓ = (1/2)(3k2 − 9k+ 2) and k ≥ 4. Then G has
order kℓ, but G has neither {(k), (k − 1, 1)}-decomposition nor {(k), (1k)}-decomposition.

Firstly, we will show that G has no {(k), (k − 1, 1)}-decomposition. The maximum number of vertex disjoint copies of
(k − 1) in G is

k(k − 3) − 1 +

k−2
i=1

i =
1
2
(3k2 − 9k) < ℓ.

Hence, G has no {(k), (k − 1, 1)}-decomposition.
Next, we will show that G has no {(k), (1k)}-decomposition. Note that the maximum number of vertex disjoint copies of

(k) in G is

(k − 1)(k − 3) − 1 +

k−2
i=1

i =
1
2
(3k2 − 11k + 6) = ℓ − k + 2.
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