Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

An extremal problem for vertex partition of complete multipartite graphs

Tomoki Nakamigawa

Department of Information Science, Shonan Institute of Technology, 1-1-25 Tsujido-Nishikaigan, Fujisawa, Kanagawa 251-8511, Japan

a r t i c l e i n f o

Article history: Received 7 March 2014 Received in revised form 4 November 2015 Accepted 21 January 2016 Available online 18 February 2016

Keywords: Extremal graph theory Graph Ramsey theory Graph decomposition

a b s t r a c t

For a graph *G* and a family H of graphs, a vertex partition of *G* is called an H -decomposition, if every part induces a graph isomorphic to one of \mathcal{H} . For $1 \le a \le k$, let $A(k, a)$ denote the graph which is a join of an empty graph of order *a* and a complete graph of order *k* − *a*. Let A_k = { $A(k, a)$: 1 ≤ a ≤ k }. In this paper, extremal problems related to *H*-decomposition of a complete multipartite graph, where $H \subset A_k$, are studied. Among other results, it is proved that for every complete multipartite graph *G* of order *k*ℓ, where $\ell \geq k-2 \geq 2$, there is a positive integer *a* such that *G* admits an $\{A(k, a), A(k, a+1),\}$ $A(k, a + 2)$ }-decomposition.

1. Introduction

A graph is finite and undirected with no multiple edges or loops. Let $\mathcal H$ be a family of graphs. For a graph *G*, we call a *vertex partition* $V(G) = V_1 \cup \cdots \cup V_\ell$ *an* H *-decomposition, if* $G[V_i] \in H$ *for all* $1 \le i \le \ell$ *, where* $G[V_i]$ *is a subgraph of G* induced by V_i . In the following, we mainly consider the case where *G* is a complete multipartite graph and *H* consists of graphs with a common number of vertices.

Our aim is to find sufficient conditions for the existence of an H -decomposition having some nice properties. The problems raised in the paper can be considered as a coin problem. Let a set of piles of coins be given. A pile of coins corresponds to a partite set of complete multipartite graph, and a rearrangement of coins corresponds to a vertex partition of a complete multipartite graph.

The next results were proved in [\[3,](#page--1-0)[4\]](#page--1-1).

Theorem A (*[\[3\]](#page--1-0)*)**.** *For every complete multipartite graph G of order* (*k*+1)ℓ−1*, where* ℓ ≥ *k*−2*, there is an induced subgraph G* ′ *of order k*ℓ *such that G*′ *admits an* {*H*}*-decomposition with some complete multipartite graph H of order k.*

Theorem B ([\[4\]](#page--1-1)). For every complete multipartite graph G of order k ℓ , where $k \geq 2$ and $\ell \geq 2$, there is a pair of complete *multipartite graphs* H_1 , H_2 *of order k such that G admits an* $\{H_1, H_2\}$ *-decomposition.*

In the following, $K_{n_1,n_2,...,n_s}$ is denoted by (n_1,n_2,\ldots,n_s) . Furthermore, if t partite sets have a common order a , we write as (\ldots, a^t, \ldots) instead of $(\ldots, a, a, \ldots, a, \ldots)$. In particular, (n) denotes the empty graph of order *n*, and (1^n) denotes the complete graph of order *n*.

Let $A_k = \{(a, 1^{k-a}) : 1 \le a \le k\}$. A_k is a family of graphs of order *k* which consists of a complete graph (1^k) , and an empty graph (k) and joins of a complete graph and an empty graph. In this paper, we focus on an H -decomposition, where \mathcal{H} ⊂ \mathcal{A}_k .

© 2016 Elsevier B.V. All rights reserved.

E-mail address: [nakami@info.shonan-it.ac.jp.](mailto:nakami@info.shonan-it.ac.jp)

<http://dx.doi.org/10.1016/j.disc.2016.01.012> 0012-365X/© 2016 Elsevier B.V. All rights reserved.

2. Main results

In this section, we present the main results of the paper. The proofs will be given in Section [3.](#page--1-2) Firstly, we have the following result.

Theorem 1. *For every complete multipartite graph G of order k*ℓ*, where* ℓ ≥ *k* − 2 ≥ 2*, there is a positive integer a such that G admits an* $\{(a, 1^{k-a}), (a + 1, 1^{k-(a+1)}), (a + 2, 1^{k-(a+2)})\}$ -decomposition.

The next statement is an immediate consequence of [Theorem 1.](#page-1-0)

Corollary 2. *Every complete multipartite graph G of order k* ℓ *, where* $\ell \geq k - 2 \geq 2$, admits an A_k -decomposition.

The bound for ℓ in [Corollary 2](#page-1-1) (and also in [Theorem 1\)](#page-1-0) is tight. To see this, consider the complete bipartite graph $G = ((k-1)\ell - 1, k-2)$ with $\ell = k-3$ and $k > 4$. Then *G* has order $k\ell$, but *G* has no A_k -decomposition. Assume to the contrary that *G* has an A*k*-decomposition. Then *G* has a {(*k*), (*k* − 1, 1)}-decomposition, since *G* has only two partite sets and contains no copy of $(a, 1^{k-a})$ for $1 \le a \le k-2$. However, this is impossible, since *G* has at most $\ell-1$ vertex disjoint copies of $(k - 1)$.

A related result of [Theorem 1](#page-1-0) is as follows.

Theorem 3. *Let G be a complete multipartite graph of order k*ℓ*. Then the following statements hold:*

(a) If $k = 3$, then G has a {(2, 1), (3)}-decomposition or {(1³), (2, 1)}-decomposition.

(b) If $k \ge 4$ and $\ell \ge 2k - 6$, then there is a positive integer a such that G admits an $\{(a, 1^{k-a}), (a + 1, 1)\}$ 1 *k*−(*a*+1))}*-decomposition.*

The bound for ℓ in [Theorem 3\(](#page-1-2)b) is tight. To see this, consider the complete multipartite graph $G = ((k - 1)$ $(k-3)-1$, $(k-1)(k-3)-1$, $k-4$) with $\ell = 2k-7$ and $k \ge 4$. Then G has order $k\ell$, but G has no $\{(a, 1^{k-a}), (a+1, 1^{k-(a+1)})\}$ decomposition. For $k = 4$, then $G = (2, 2)$ has clearly no A_k -decomposition. For $k > 5$, let P_1 , P_2 and P_3 be three partite sets of *G* with $|P_1| = |P_2| = (k-3)(k-1) - 1$ and $|P_3| = k-4$. Suppose to the contrary that *G* has an $\{(a, 1^{k-a}),$ (*a* + 1, 1 *k*−(*a*+1))}-decomposition, Since *G* has only three partite sets, we have *a* ≥ *k* − 2. Furthermore, since *G* contains at most $\ell - 1$ vertex disjoint copies of $(k - 1)$, we have $a = k - 2$. Without loss of generality, we may assume P_1 is partitioned into *k* − 3 copies of (*k* − 2) and *P*² is partitioned into *k* − 4 copies of (*k* − 2). However, this is impossible, since the number of the remaining vertices of P_2 is $(k-1)(k-3)-1-(k-4)(k-2)=2k-6$, which is greater than ℓ .

If every complete multipartite graph of order *k*ℓ admits an H-decomposition, where H is a family of graphs each of which has order *k*, then we need {(*k*), $(k-1, 1)$ } ⊂ *H* for *G* = ($k\ell$ − 1, 1) and also need (1^k) ∈ *H* for *G* = (1^{k ℓ}). Conversely, these three graphs (k), $(k-1, 1)$, (1^k) suffice when ℓ is sufficiently large.

Theorem 4. Every complete multipartite graph of order k ℓ , where $k \geq 4$ and $\ell \geq (k-2)^2$, admits a $\{(k), (k-1, 1),$ (1 *k*)}*-decomposition.*

The bound for ℓ in [Theorem 4](#page-1-3) is tight. To see this, consider the multipartite graph $G = ((k - 1)\ell - 1,$ $(k-2)^{k-2}$) with $\ell = (k-2)^2 - 1$ and $k \ge 4$. Then *G* has order $k\ell$, but *G* has no {(*k*), (*k* − 1, 1), (1^k)}-decomposition. Assume to the contrary that *G* has a $\{(k), (k-1, 1), (1^k)\}$ -decomposition. Then *G* has a $\{(k), (k-1, 1)\}$ -decomposition, since *G* has no copy of (1^k). However, this is impossible, since *G* has at most $\ell-1$ vertex disjoint copies of ($k-1$).

Theorem 5. *Let G be a complete multipartite graph of order k*ℓ*. Then the following statements hold:*

(a) If $k = 3$, then G has a {(3), (2, 1)}-decomposition or a {(3), (1³)}-decomposition.

(b) If $k \ge 4$ and $\ell \ge \frac{1}{2}(3k^2 - 9k + 4)$, then G has a $\{(k), (k - 1, 1)\}$ -decomposition or a $\{(k), (1^k)\}$ -decomposition.

The bound for ℓ in [Theorem 5\(](#page-1-4)b) is tight. To see this, consider the multipartite graph $G = (k(k-1)(k-3)-1,(k-1)^2-1,$ $(k-2)(k-1) - 1$, $(k-3)(k-1) - 1$, ..., $2(k-1) - 1$, $1^{(k^2-k-4)/2}$) with $\ell = (1/2)(3k^2 - 9k + 2)$ and $k ≥ 4$. Then *G* has order $k\ell$, but *G* has neither {(k), $(k - 1, 1)$ }-decomposition nor {(k), (1^k) }-decomposition.

Firstly, we will show that *G* has no $\{(k), (k-1, 1)\}$ -decomposition. The maximum number of vertex disjoint copies of (*k* − 1) in *G* is

$$
k(k-3)-1+\sum_{i=1}^{k-2}i=\frac{1}{2}(3k^2-9k)<\ell.
$$

Hence, *G* has no $\{(k), (k-1, 1)\}$ -decomposition.

Next, we will show that G has no {(k), (1^k) }-decomposition. Note that the maximum number of vertex disjoint copies of (*k*) in *G* is

$$
(k-1)(k-3) - 1 + \sum_{i=1}^{k-2} i = \frac{1}{2}(3k^2 - 11k + 6) = \ell - k + 2.
$$

Download English Version:

<https://daneshyari.com/en/article/4647056>

Download Persian Version:

<https://daneshyari.com/article/4647056>

[Daneshyari.com](https://daneshyari.com)