Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

The maximum number of subset divisors of a given size

Samuel Zbarsky

Carnegie Mellon University, United States

ARTICLE INFO

Article history: Received 17 July 2014 Received in revised form 24 January 2016 Accepted 25 January 2016 Available online 23 February 2016

Keywords: Extremal combinatorics Exact enumeration

ABSTRACT

If s is a positive integer and A is a set of positive integers, we say that B is an s-divisor of A if $\sum_{b \in B} b \mid s \sum_{a \in A} a$. We study the maximal number of *k*-subsets of an *n*-element set that can be *s*-divisors. We provide a counterexample to a conjecture of Huynh that for s = 1, the answer is $\binom{n-1}{k}$ with only finitely many exceptions, but prove that adding a necessary condition makes this true. Moreover, we show that under a similar condition, the answer is $\binom{n-1}{\nu}$ with only finitely many exceptions for each *s*.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

If *X* is a set of positive integers, let $\sum X$ denote $\sum_{x \in X} x$. Let *A* be a finite subset of the positive integers. The elements of *A* are $a_1 < a_2 < \cdots < a_n$ and let *B* be a subset of *A*. We say that *B* is a *divisor* of *A* if $\sum B \mid \sum A$. We define $d_k(A)$ to be the number of *k*-subset divisors of *A* and let d(k, n) be the maximum value of $d_k(A)$ over all sets *A* of *n* positive integers.

Similarly, for $s \ge 1$ a positive integer, we say that *B* is an *s*-divisor of *A* if $\sum B \mid s \sum A$. We define $d_k^s(A)$ to be the number of k-subset s-divisors of A and let $d^{s}(k, n)$ be the maximum value of $d^{s}_{k}(A)$ over all sets A of n positive integers.

Note that the concepts of divisor and 1-divisor coincide. Also, if B is a divisor of A, then B is an s-divisor of A for all s, so $d_{k}^{s}(A) > d_{k}(A)$ and $d^{s}(k, n) > d(k, n)$.

Huynh [6] notes that for all values of a_1, \ldots, a_{n-1} , we can pick an a_n and set $A = \{a_1, \ldots, a_{n-1}, a_n\}$ so that every k-subset of $\{a_1, \ldots, a_{n-1}\}$ is an A-divisor. Therefore $d(k, n) \geq \binom{n-1}{k}$ for all $1 \leq k \leq n$. This motivates the definition that A is a *k-anti-pencil* if the set of *k*-subset divisors of *A* is $\binom{A \setminus \{a_n\}}{k}$. We similarly define *A* to be a (k, s)-anti-pencil if the set of *k*-subset s-divisors of A is $\binom{A \setminus \{a_n\}}{n}$.

Huynh [6] also formulates the following conjecture (Conjecture 22).

Conjecture 1. For all but finitely many values of k and n, $d(k, n) = \binom{n-1}{k}$.

In this paper, we provide infinite families of counterexamples, but prove that, with the exception of these families, the conjecture is true. This gives us the following modified form.

Conjecture 2. For all but finitely many integer pairs (k, n) with 1 < k < n, $d(k, n) = \binom{n-1}{k}$.

For convenience, we now rescale, dividing every element of A by $\sum A$, so that now the elements of A are positive rational numbers and $\sum A = 1$. Under this rescaling, $B \subseteq A$ is a divisor of A if and only if $\sum B = \frac{1}{m}$ for some positive integer m and *B* is an *s*-divisor of *A* if and only if $\sum B = \frac{s}{m}$ for some positive integer *m*. Clearly, the values of d(k, n) and $d^{s}(k, n)$ do not change.

http://dx.doi.org/10.1016/j.disc.2016.01.025

E-mail address: sa_zbarsky@yahoo.com.

⁰⁰¹²⁻³⁶⁵X/© 2016 Elsevier B.V. All rights reserved.

The k < n condition in Conjecture 2 is necessary since it is easy to see that $d(n, n) = 1 > \binom{n-1}{n}$. Also, if

$$A = \left\{\frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^{n-2}}, \frac{1}{3(2^{n-2})}, \frac{1}{3(2^{n-3})}\right\}$$

then $\sum A = 1$, so $d_1(A) = n$ and $d(1, n) = n > \binom{n-1}{1}$. Therefore the 1 < k condition is necessary. However, we prove that these families of values (k, n) cover all but finitely many exceptions.

Theorem 3. For all but finitely many pairs (k, n), if 1 < k < n, |A| = n, and $d_k(A) \ge \binom{n-1}{k}$, then A is a k-anti-pencil.

Note that this immediately implies Conjecture 2.

If we are interested in *s*-divisors, we get another family of exceptions. If $s \ge 2$, $a_{n-1} = \frac{1}{s+1}$ and $a_n = \frac{2}{s+2}$, then $d_{n-1}^s(A) \ge 2$, so $d^s(n-1, n) \ge 2 > \binom{n-1}{n-1}$. However, we prove that these cover all but finitely many exceptions.

Theorem 4. Fix $s \ge 1$. For all but finitely many pairs (k, n) (with the number of these pairs depending on s), if 1 < k < n - 1, |A| = n, and $d_k^s(A) \ge \binom{n-1}{k}$, then A is a (k, s)-anti-pencil.

Note that this immediately implies the following corollary.

Corollary 5. Fix $s \ge 1$. Then $d^{s}(k, n) = \binom{n-1}{k}$ for all but finitely many pairs (k, n) with 1 < k < n-1 (with the number of these pairs depending on s).

We will prove Theorem 4. In the s = 1 case, where k = n - 1, if $i \le n - 1$, then $\sum (A \setminus \{a_i\}) > \frac{1}{2}$, so $A \setminus \{a_i\}$ is not a divisor of *A*. This, together with the s = 1 case of Theorem 4, gives us Theorem 3.

2. Lemmas

We will need a lemma about a certain poset. First, we present some general definitions and theorems (all the definitions and results up to the lemma statement can be found in [4]).

The width of a poset is the size of its largest antichain. If *P* is a finite poset, we say that *P* is *ranked* if there exists a function $\rho : P \rightarrow \mathbb{Z}$ satisfying $\rho(y) = \rho(x) + 1$ if *y* covers *x* in *P* (i.e. y > x, and there is no $z \in P$ with y > z > x). If $\rho(x) = i$, then *x* is said to have *rank i*. Let *P_i* denote the set of elements of *P* of rank *i*. We say *P* is *rank-symmetric rank-unimodal* if there exists some $c \in \mathbb{Z}$ with $|P_i| \le |P_{i+1}|$ when i < c and $|P_{2c-i}| = |P_i|$ for all $i \in \mathbb{Z}$. A ranked poset *P* is called *strongly Sperner* if for every positive integer *s*, the largest subset of *P* that has no (s + 1)-chain is the union of the *s* largest *P_i*.

Proctor, Saks, and Sturtevant [9] prove that the class of rank-symmetric rank-unimodal strongly Sperner posets is closed under products. A finite product of finite linear orders is called a *chain product*. Since a linear ordering of length n is rank-symmetric rank-unimodal strongly Sperner, so is any chain product.

We now take a *d*-dimensional lattice cube with *n* lattice points per edge. Define a poset on the lattice points by $(x_1, \ldots, x_d) \leq (y_1, \ldots, y_d)$ if $x_i \leq y_i$ for all *i*. This is a chain product, so it is rank-symmetric rank-unimodal strongly Sperner.

Lemma 6. The largest antichain in this poset has at most $(n + d - 2)^{d-1}\sqrt{\frac{2}{d}}$ elements.

Proof. Center the cube on the origin by translation in \mathbb{R}^d . Let *U* be the set of elements whose coordinates sum to 0. Since the poset is rank-symmetric rank-unimodal strongly Sperner, its width is at most the size of P_c , which is |U|.

For each $y = (y_1, ..., y_d) \in U$, let S_y be the set of points $(x_1, ..., x_d)$ with $|x_i - y_i| < \frac{1}{2}$ for $1 \le i \le d - 1$ (note that this does not include the last index) which lie on the hyperplane given by $x_1 + \cdots + x_d = 0$. If y, z are distinct elements of U, then S_y and S_z are clearly disjoint. Also, the projection of S_y onto the hyperplane given by $x_d = 0$ is a unit (d - 1)-dimensional hypercube, which has volume 1. Thus the volume of S_y is \sqrt{d} and the volume of $\bigcup_{y \in U} S_y$ is $|U|\sqrt{d}$.

On the other hand, if $(x_1, \ldots, x_d) \in S_y$, then $|x_i - y_i| < \frac{1}{2}$ for $1 \le i \le d - 1$ and $|x_d - y_d| \le \sum_{i=1}^{d-1} |x_i - y_i| < \frac{1}{2}(d-1)$. Thus (x_1, \ldots, x_d) lies in the cube of edge length (n-1) + (d-1) = n + d - 2 centered at the origin. Therefore $\bigcup_{y \in U} S_y$ lies in the intersection of a cube of edge length n + d - 2 with a hyperplane through its center (the origin).

Ball [1] shows that the volume of the intersection of a unit hypercube of arbitrary dimension with a hyperplane through its center is at most $\sqrt{2}$. Therefore the volume of $\bigcup_{v \in U} S_y$ is at most $(n + d - 2)^{d-1}\sqrt{2}$, so

$$|U| \le (n+d-2)^{d-1}\sqrt{\frac{2}{d}}. \quad \Box$$

Let $X = \{x_1 < \cdots < x_n\}$ be a set of positive integers. If $B, C \in \binom{X}{d}$, then we say that $B \le C$ if we can write $B = \{b_1, \ldots, b_d\}$ and $C = \{c_1, \ldots, c_d\}$ with $b_i \le c_i$ for all $1 \le i \le d$. Whenever we compare subsets of A, we will be using this partial order.

Download English Version:

https://daneshyari.com/en/article/4647061

Download Persian Version:

https://daneshyari.com/article/4647061

Daneshyari.com