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a b s t r a c t

Peg solitaire is a game generalized to connected graphs by Beeler and Hoilman. In the game
pegs are placed on all but one vertex. If xyz form a 3-vertex path and x and y each has a peg
but z does not, thenwe can remove the pegs at x and y and place a peg at z. By analogywith
the moves in the original game, this is called a jump. The goal of the peg solitaire game on
graphs is to find jumps that reduce the number of pegs on the graph to 1.

Beeler and Rodriguez proposed a variant where we insteadwant tomaximize the num-
ber of pegs remaining when no more jumps can be made. Maximizing over all initial loca-
tions of a single hole, themaximumnumber of pegs left on a graphGwhenno jumps remain
is the fool’s solitaire number F(G). We determine the fool’s solitaire number for the join of
any graphs G and H . For the Cartesian product, we determine F(G� Kk) when k ≥ 3 and G
is connected and show why our argument fails when k = 2. Finally, we give conditions on
graphs G and H that imply F(G�H) ≥ F(G)F(H).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Peg solitaire is a game generalized to connected graphs by Beeler and Hoilman [4]. In the peg solitaire game on graphs,
each vertex except one starts with a peg. Vertices without pegs are said to be holes. If adjacent vertices x and y have pegs,
and z adjacent to y is a hole, then we may jump the peg at x over the peg at y and into the hole at z. This removes the peg at
y so that x and y become holes and z has a peg. We denote this jump by xyz.

In general, if we start with some configuration of pegs and holes, and some succession of jumps reduces the number of
pegs to 1, then the configuration is solvable. In the peg solitaire game on a graph G, if some configuration with a hole at one
vertex and pegs at all other vertices is solvable, then we say G is solvable. If G can be solved starting with a single hole at any
vertex, then G is freely solvable. Solvability requires G to be connected.1

Beeler and Hoilman [4] determined which graphs are solvable and freely solvable among stars, paths, cycles, complete
graphs, and complete bipartite graphs. They also proved that the Cartesian products of solvable graphs are solvable and gave
additional sufficient conditions for the solvability of Cartesian products of graphs. Walvoort [1] also determined which of
the trees of diameter 4 are solvable.

An alternate goal for the peg solitaire gamewas proposed in [6]. In the fool’s solitaire game,we instead try tomaximize the
number of pegs at the end of the process (when there are no remaining available moves). A terminal state is a set of vertices
that are the final locations of pegs when the game is played starting with a single hole, and played until no more jumps are
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1 There are several traditional boards marketed commercially, a triangle with 15 positions in the US, a portion of a grid in England (marketed as ‘‘Hi-Q’’
in the US), and a European board with more positions than the English board. The significant distinction between these games and the graph version is
that they restrict jumps to be made along geometric straight lines.
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possible. Because no more jumps are possible from a terminal state, all terminal states are independent sets of vertices. The
fool’s solitaire number of a graphG is themaximumsize of a terminal state and is denoted by F(G). A fundamental observation
follows from the fact that moves from a configuration are the reverse of moves from the complementary configuration.

Proposition 1 ([6]). A set of vertices T is a terminal state of some solitaire game on G if and only if a starting configuration with
holes at vertices of T and pegs at vertices of V (G) − T can be reduced to a single peg.

Proposition 1 is used in our proofs of lower bounds on the fool’s solitaire number. Letting α(G) denote the independence
number of G, Beeler and Rodriguez [6] also proved.

Proposition 2 ([6]). Let G be a graph. Because terminal states are independent sets, F(G) ≤ α(G). Also, if α(G) ≤ |V (G)| − 2
and V (G) − A is independent whenever A is a maximum independent set, then F(G) ≤ α(G) − 1.

The proposition holds since if the complement of every maximum independent set is independent and has at least two
vertices, then by Proposition 1 no maximum independent set can be the terminal state of a solitaire game.

The fool’s solitaire numbers for complete graphs, stars, complete bipartite graphs, paths, cycles, and hypercubes were
found in [6]. The fool’s solitaire number of trees with diameter 4was computed byWalvoort [1]. In particular, there is a class
of diameter 4 trees for which α(G) − F(G) approaches α(G)/6, disproving an earlier conjecture that α(G) − F(G) ≤ 1 [6]. It
remains open how small F(G) can be in terms of α(G).

Beeler andRodriguez [6] proved F(Kn,m) = α(Kn,m)−1, and thus Proposition 2 is sharp. In Section 2,we extend their result
on complete bipartite graphs by determining the fool’s solitaire number of all graphs whose complements are disconnected.

Beeler and Rodriguez [6] also asked for the behavior of the fool’s solitaire number under the Cartesian product operation.
The Cartesian product of G and H , denoted by G�H , is the graph with vertex set V (G)×V (H) such two vertices are adjacent
if and only if they are equal in one coordinate and adjacent in the other. In Section 3, we show F(G� Kk) = α(G� Kk) for
k ≥ 3 when G is any connected graph. However, this behavior does not hold when k = 2: if G is a bipartite graph with a
Hamiltonian path, then F(G� K2) = α(G� K2) − 1. This leads us to ask:

Question 1. What is F(G� K2) when G is not a bipartite graph having a Hamiltonian path?

Walvoort [1] asked for a non-trivial lower bound on F(G). In this direction, we give sufficient conditions for F(G�H) ≥

F(G)F(H) in Section 4. This is a partial answer to the question in [6] asking for the relationship among F(G), F(H), and
F(G�H). In considering the sharpness of our inequality, we ask:

Question 2. By how much can F(G�H) exceed F(G)F(H)?

Computer testing shows that F(G�H) ≥ F(G)F(H) does not always hold: if G is the star with 4 vertices and H is the paw
graph or the path on three vertices (P3), then F(G�H) = F(G)F(H) − 1. This leads to the question:

Question 3. When does F(G)F(H) exceed F(G�H)?

In another direction, in Lemma 5 we show that complete graphs with more than four vertices have the property that
one can begin with a hole at any vertex and can solve the graph so that the final peg is at any specified vertex. This raises a
question about a restriction on the idea of freely solvable graphs.

Question 4. What graphs, other than Kk for k > 4, can start with one hole in any specified vertex and end with one peg at
any specified vertex?

Bell [3] determined that several geometrically defined boards have this property.

2. Joins

The join of G and H , denoted by G H , is formed by adding to the disjoint union of G and H all edges joining V (G) and
V (H). Note that every join is connected and these are precisely the graphs whose complements are disconnected. For the
complete bipartite graph Kn,m with n ≥ m > 1, Beeler and Rodriguez [6] showed F(Kn,m) = n − 1. By viewing Kn,m as
Kn Km, we expand their method to find the fool’s solitaire number of all graph joins, starting with the case of joins with K1.

Lemma 3. If G is a graph, then F(G K1) = α(G K1).
Proof. Always F(G K1) ≤ α(G K1) = α(G), so we must show F(G K1) ≥ α(G K1). If G = Kn, then G K1 is a star
and F(G K1) = α(G K1) because there are no available moves if we place the starting hole at the center of the star.
Otherwise, let S be a largest independent set of G, and let z be the vertex outside G. We wish to show that S is a terminal
state; by Proposition 1 it suffices to solve the game where S gives the locations of the starting holes. Since S is a maximum
independent set, every peg is adjacent to a hole in G. Start by jumping any peg in G over the peg at z, and landing in a hole
adjacent to another peg in G. We now have two adjacent pegs and we next jump one over the other and land at the hole at
z. By repeating this two-jump process the number of pegs is reduced to 1.

The remaining case is when G H is not a complete bipartite graph and has no dominating vertex.

Theorem 4. Let G and H be graphs with |V (G)|, |V (H)| ≥ 2 and |E(G)| + |E(H)| ≥ 1. Then F(G H) = α(G H).
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