ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Weighted well-covered claw-free graphs

Department of Computer Science and Mathematics, Ariel University, Israel

ARTICLE INFO

Article history:
Received 12 January 2014
Received in revised form 2 October 2014
Accepted 12 October 2014
Available online 22 November 2014

Keywords: Well-covered graph Equimatchable graph Claw-free graph Maximal independent set Maximal matching

ABSTRACT

A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space. Given an input claw-free graph G, we present an $O(m^{\frac{3}{2}}n^3)$ algorithm, whose input is a claw-free graph G, and output is the vector space of weight functions w, for which G is w-well-covered.

A graph G is equimatchable if all its maximal matchings are of the same cardinality. Assume that a weight function w is defined on the edges of G. Then G is w-equimatchable if all its maximal matchings are of the same weight. For every graph G, the set of weight functions w such that G is w-equimatchable is a vector space. We present an $O(m \cdot n^4 + n^5 \log n)$ algorithm, which receives an input graph G, and outputs the vector space of weight functions w such that G is w-equimatchable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Basic definitions and notation

Throughout this paper G is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set V(G) and edge set E(G). In what follows, we denote n = |V(G)| and m = |E(G)|.

Cycles of k vertices are denoted by C_k , and paths of k vertices are denoted by P_k . When we say that G contains a C_k or a P_k for some $k \ge 3$, we mean that G admits a subgraph isomorphic to C_k or to P_k , respectively. It is important to mention that these subgraphs are not necessarily induced.

Let u and v be two vertices in G. The distance between u and v, denoted as d(u, v), is the length of a shortest path between u and v, where the length of a path is the number of its edges. If S is a non-empty set of vertices, then the distance between u and S, denoted as d(u, S), is defined by

$$d(u, S) = \min\{d(u, s) : s \in S\}.$$

For every positive integer i, denote

$$N_i(S) = \{x \in V(G) : d(x, S) = i\},\$$

and

$$N_i[S] = \{x \in V(G) : d(x, S) \le i\}.$$

E-mail addresses: levitv@ariel.ac.il (V.E. Levit), davidta@ariel.ac.il (D. Tankus).

^{*} Corresponding author.

We abbreviate $N_1(S)$ and $N_1[S]$ to be N(S) and N[S], respectively. If S contains a single vertex, v, then we abbreviate

$$N_i(\{v\}), N_i[\{v\}], N(\{v\}), \text{ and } N[\{v\}]$$

to be

$$N_i(v)$$
, $N_i[v]$, $N(v)$, and $N[v]$,

respectively. We denote by G[S] the subgraph of G induced by S. For every two sets, S and T, of the vertices of G, we say that S dominates T if $T \subset N[S]$.

1.2. Well-covered graphs

Let *G* be a graph. A set of vertices *S* is *independent* if its elements are pairwise nonadjacent. An independent set of vertices is *maximal* if it is not a subset of another independent set. An independent set of vertices is *maximum* if the graph does not contain an independent set of a higher cardinality.

The graph G is well-covered if every maximal independent set is maximum. Assume that a weight function $w:V(G)\longrightarrow \mathbb{R}$ is defined on the vertices of G. For every set $S\subseteq V(G)$, define

$$w(S) = \sum_{s \in S} w(s).$$

Then G is w-well-covered if all maximal independent sets of G are of the same weight.

The problem of finding a maximum independent set in an input graph is **NP**-complete. However, if the input is restricted to well-covered graphs, then a maximum independent set can be found polynomially using the *greedy algorithm*. Similarly, if a weight function $w: V(G) \longrightarrow \mathbb{R}$ is defined on the vertices of G, and G is w-well-covered, then finding a maximum weight independent set is a polynomial problem.

The recognition of well-covered graphs is known to be **co-NP**-complete. This was proved independently in [4,21]. In [3] it is proven that the problem remains **co-NP**-complete even when the input is restricted to $K_{1,4}$ -free graphs. However, the problem is polynomially solvable for $K_{1,3}$ -free graphs [22,23], for graphs with girth at least 5 [8], for graphs with a bounded maximal degree [2], for chordal graphs [19], for bipartite graphs [7,18,20], and for graphs without cycles of lengths 4 and 5 [9]. It should be emphasized that the forbidden cycles are not necessarily induced.

For every graph G, the set of weight functions w for which G is w-well-covered is a *vector space* [2]. That vector space is denoted as WCW(G) [1].

Clearly, $w \in WCW(G)$ if and only if G is w-well-covered. Since recognizing well-covered graphs is **co-NP**-complete, finding the vector space WCW(G) of an input graph G is **co-NP**-hard. In [16] there is a polynomial algorithm which receives as its input a graph G without cycles of lengths 4, 5, and 6, and outputs WCW(G).

This article presents a polynomial algorithm whose input is a $K_{1,3}$ -free graph G, and the output is WCW(G). Thus we generalize [22,23], which supply a polynomial time algorithm for recognizing well-covered $K_{1,3}$ -free graphs.

1.3. Generating subgraphs and relating edges

We use the following notion, which has been introduced in [14]. Let B be an induced complete bipartite subgraph of G on vertex sets of bipartition B_X and B_Y . Assume that there exists an independent set S such that each of $S \cup B_X$ and $S \cup B_Y$ is a maximal independent set of G. Then B is a generating subgraph of G, and it produces the restriction: $w(B_X) = w(B_Y)$. Every weight function w such that G is w-well-covered must satisfy the restriction $w(B_X) = w(B_Y)$. The set S is a witness that B is generating. In the restricted case that the generating subgraph B is isomorphic to $K_{1,1}$, call its vertices X and X. In that case X is a relating edge, and X is X in that X is X is a relating edge, and X in that X is X in that X is X is a relating edge, and X in that X is X in that X in that X is X in that X in that X is X in that X is X in that X is X in that X in that X in that X is X in that X in that X is X in that X in that X in that X is X in that X in that X in that X is X in that X in that X is X in that X in that X in that X is X in that X in that X is X in that X in that X in that X is X in that X in that X is X in that X in that X is X in that X in that X is

The decision problem whether an edge in an input graph is relating is **NP**-complete [1]. Therefore, recognizing generating subgraphs is **NP**-complete as well. In [15] it is proved that recognizing relating edges and generating subgraphs is **NP**-complete even in graphs without cycles of lengths 4 and 5. However, recognizing relating edges can be done polynomially if the input is restricted to graphs without cycles of lengths 4 and 6 [13], and recognizing generating subgraphs is a polynomial problem when the input is restricted to graphs without cycles of lengths 4, 6 and 7 [14].

Generating subgraphs play an important roll in finding the vector space WCW(G). In this article we use generating subgraphs in the algorithm which receives as its input a $K_{1,3}$ -free graph G, and outputs WCW(G).

1.4. Equimatchable graphs

Let G be a graph. The *line graph* of G, denoted as L(G), is a graph such that every vertex of L(G) represents an edge in G, and two vertices of L(G) are adjacent if and only if they represent two edges in G with a common endpoint.

Every independent set of vertices in L(G) defines a set of pairwise non-adjacent edges in G. A set of pairwise non-adjacent edges is called a *matching*. A matching M saturates a set S of vertices if every vertex of S is an endpoint of an edge of M. A matching in a graph is *maximal* if it is not contained in another matching.

The *size* of a matching M, denoted by |M|, is the number of its edges. A matching M is *maximum* if the graph does not admit a matching with size bigger than |M|.

Download English Version:

https://daneshyari.com/en/article/4647081

Download Persian Version:

https://daneshyari.com/article/4647081

<u>Daneshyari.com</u>