Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Congruences for the number of partitions and bipartitions with distinct even parts

ABSTRACT

Haobo Dai

Department of Mathematics, University of Shanghai Jiao Tong University, Shanghai, 200240, China

ARTICLE INFO

Article history: Received 20 November 2013 Received in revised form 13 October 2014 Accepted 15 October 2014 Available online 22 November 2014

Keywords: Partitions and bipartitions with even parts distinct Congruences Binary quadratic forms

1. Introduction

Let ped(n) denote the number of partitions of *n* wherein even parts are distinct (and odd parts are unrestricted). The generating function for ped(n) [1] is

of congruences for $ped_{-2}(n)$ modulo 8.

$$\sum_{n=0}^{\infty} ped(n)q^n = \frac{(q^4; q^4)_{\infty}}{(q; q)_{\infty}} = \prod_{m=1}^{\infty} \frac{(1-q^{4m})}{(1-q^m)}.$$
(1.1)

Let ped(n) denote the number of partitions of *n* wherein even parts are distinct (and odd

parts are unrestricted). We show infinite families of congruences for ped(n) modulo 8. We

also examine the behavior of $ped_{-2}(n)$ modulo 8 in detail where $ped_{-2}(n)$ denotes the

number of bipartitions of *n* with even parts distinct. As a result, we find infinite families

Note that by (1.1), the number of partitions of *n* wherein even parts are distinct equals the number of partitions of *n* with no parts divisible by 4, i.e., the 4-regular partitions (see [1] and references therein). The arithmetic properties were studied by Andrews, Hirschhorn and Sellers [1] and Chen [4]. For example, in [1], Andrews, et al., proved that for all $n \ge 0$,

$$ped(9n+4) \equiv 0 \pmod{4} \tag{1.2}$$

and

$$ped(9n+7) \equiv 0 \pmod{4}.$$
(1.3)

Suppose that *r* is an integer such that $1 \le r < 8p$, $rp \equiv 1 \pmod{8}$, and (r, p) = 1. By using modular forms, Chen [4] showed that if $c(p) \equiv 0 \pmod{4}$, then, for all $n \ge 0$, $\alpha \ge 1$,

$$ped\left(p^{2\alpha}n + \frac{rp^{2\alpha-1} - 1}{8}\right) \equiv 0 \pmod{4}$$
(1.4)

where c(p) is the *p*-th coefficient of $\frac{\eta^4(16z)}{\eta(8z)\eta(32z)} := \sum_{n=1}^{\infty} c(n)q^n$. Note that in [4], Chen did not show the coefficients of c(p) explicitly. In a beautiful paper [5], Chen studied arithmetic properties for the number of *k*-tuple partitions with even parts

http://dx.doi.org/10.1016/j.disc.2014.10.013 0012-365X/© 2014 Elsevier B.V. All rights reserved.

FLSEVIER

© 2014 Elsevier B.V. All rights reserved.

E-mail address: dedekindbest@hotmail.com.

distinct modulo 2 for any positive integer *k* by using the nilpotence of Hecke operators mod 2. Berkovich and Patane [2] calculated c(n) explicitly. In particular, they showed that c(p) = 0 if and only if p = 2, $p \equiv 5 \pmod{8}$ and $p \equiv 3 \pmod{4}$. As a direct application of Chen's, Berkovich and Patane's theorems, we have the following.

Corollary 1.1. Let *p* be a prime which is congruent to 5 modulo 8 or congruent to 3 modulo 4 and suppose that *r* is an integer such that $1 \le r < 8p$, $rp \equiv 1 \pmod{8}$, and (r, p) = 1, and then

$$ped\left(p^{2\alpha}n+\frac{rp^{2\alpha-1}-1}{8}\right)\equiv 0\pmod{4}$$

for all $n \ge 0$ and $\alpha \ge 1$.

Ono and Penniston [9] showed an explicit formula for Q(n) modulo 8 by using the arithmetic of the ring of $\mathbb{Z}[\sqrt{-6}]$ where Q(n) denotes the number of partitions of an integer *n* into distinct parts. We are unable to explicitly determine *ped*(*n*) modulo 8. But we can prove infinitely families congruences for *ped*(*n*) modulo 8. Our first main result is the following.

Theorem 1.2. Let *p* be a prime which is congruent to $7 \pmod{8}$. Suppose that *r* is an integer such that $1 \le r < 8p, r \equiv 7 \pmod{8}$, and (r, p) = 1, and then for all $n \ge 0$, $\alpha \ge 0$, we have

$$ped\left(p^{2\alpha+2}n+\frac{rp^{2\alpha+1}+1}{8}\right)\equiv 0\pmod{8}.$$

Example 1.3. For all $n \ge 0, \alpha \ge 0$,

$$ped\left(7^{2\alpha+2}n+\frac{r\times7^{2\alpha+1}-1}{8}\right)\equiv 0\pmod{8},$$

for r = 15, 23, 31, 39, 47 and 55.

Let $ped_{-2}(n)$ be the number of bipartitions of *n* with even parts distinct. The generating function of $ped_{-2}(n)$ [7] is

$$\sum_{n=0}^{\infty} ped_{-2}(n)q^n = \frac{(q^4; q^4)_{\infty}^2}{(q; q)_{\infty}^2} = \prod_{m=1}^{\infty} \frac{(1-q^{4m})^2}{(1-q^m)^2}.$$
(1.5)

Recently in [7], Lin investigated arithmetic properties of $ped_{-2}(n)$. In particular, he showed following theorems.

Theorem 1.4 ([7]). For $\alpha \ge 0$ and any $n \ge 0$, we have

$$ped_{-2}(n)\left(3^{2\alpha+2}n + \frac{11 \times 3^{2\alpha+1} - 1}{4}\right) \equiv 0 \pmod{3},$$
$$ped_{-2}(n)\left(3^{2\alpha+3}n + \frac{5 \times 3^{2\alpha+2} - 1}{4}\right) \equiv 0 \pmod{3}.$$

Theorem 1.5 ([7]). $ped_{-2}(n)$ is even unless n is of the form k(k + 1) for some $k \ge 0$. Furthermore, $ped_{-2}(n)$ is a multiple of 4 if n is not the sum of two triangular numbers.

As a corollary of Theorems 1.4 and 1.5, Lin proved an infinite family of congruences for $ped_{-2}(n)$ modulo 12:

$$ped_{-2}\left(3^{2\alpha+2}n+\frac{11\times 3^{2\alpha+1}-1}{4}\right) \equiv 0 \pmod{12},$$

for any integers $\alpha \ge 0$ and $n \ge 0$.

As in [9], our second main achievement is to examine $ped_{-2}(n)$ modulo 8 in detail.

Theorem 1.6. If *n* is a non-negative integer, then let *N* and *M* be the unique positive integers for which

 $4n+1=N^2M$

where M is square-free. Then the following are true.

- (1) If M = 1, then $ped_{-2}(n)$ is odd.
- (2) If M = p, and $\operatorname{ord}_{p}(4n + 1) \equiv 1 \pmod{4}$, then $\operatorname{ped}_{-2}(n) \equiv 2 \pmod{4}$.
- (3) If M = p, and $\operatorname{ord}_{n}(4n + 1) \equiv 3 \pmod{8}$, then $\operatorname{ped}_{-2}(n) \equiv 4 \pmod{8}$.
- (4) If $M = p_1 p_2$, where p_1 and p_2 are distinct primes, $p_i \equiv 1 \pmod{4}$ and $\operatorname{ord}_{p_i}(4n + 1) \equiv 1 \pmod{4}$ for i = 1, 2, then $ped_{-2}(n) \equiv 4 \pmod{8}$.
- (5) In all other cases we have that $ped_{-2}(n) \equiv 0 \pmod{8}$.

As a corollary to Theorem 1.6 we can show infinite families of congruences for $ped_{-2}(n)$ modulo 8.

Download English Version:

https://daneshyari.com/en/article/4647085

Download Persian Version:

https://daneshyari.com/article/4647085

Daneshyari.com