Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Adjacent vertex distinguishing indices of planar graphs without 3-cycles

Danjun Huang^a, Zhengke Miao^b, Weifan Wang^{a,*}

^a Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China ^b School of Mathematical Science, Jiangsu Normal University, Xuzhou 221116, China

ARTICLE INFO

Article history: Received 2 May 2013 Received in revised form 9 October 2014 Accepted 13 October 2014 Available online 22 November 2014

Keywords: Adjacent vertex distinguishing coloring Planar graph Maximum degree Cycle

1. Introduction

ABSTRACT

Given a proper edge k-coloring ϕ and a vertex $v \in V(G)$, let $C_{\phi}(v)$ denote the set of colors used on edges incident to v with respect to ϕ . The adjacent vertex distinguishing index of G, denoted by $\chi'_{a}(G)$, is the least value of k such that G has a proper edge k-coloring which satisfies $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of adjacent vertices u and v. In this paper, we show that if G is a connected planar graph with maximum degree $\Delta \geq 12$ and without 3-cycles, then $\Delta \leq \chi'_{a}(G) \leq \Delta + 1$, and $\chi'_{a}(G) = \Delta + 1$ if and only if *G* contains two adjacent vertices of maximum degree. This extends a result in Edwards et al. (2006), which says that if G is a connected bipartite planar graph with $\Delta \ge 12$ then $\chi'_a(G) \le \Delta + 1$.

© 2014 Elsevier B.V. All rights reserved.

Only simple and finite graphs are considered in this paper. A plane graph is a particular drawing of a planar graph on the Euclidean plane. Let V(G), E(G), F(G), $\Delta(G)$ (for short Δ), $\delta(G)$, and g(G) denote the vertex set, the edge set, the face set, the maximum degree, the minimum degree, and the girth of a given plane graph G, respectively. A proper edge k-coloring of a graph *G* is a mapping $\phi : E(G) \to \{1, 2, \dots, k\}$ such that $\phi(e) \neq \phi(e')$ for any two adjacent edges *e* and *e'*. We use $C_{\phi}(v)$ to denote the set of colors assigned to edges incident to a vertex v, i.e., $C_{\phi}(v) = \{\phi(uv) | uv \in E(G)\}$. The coloring ϕ is called an adjacent vertex distinguishing edge coloring or an avd-coloring, if $C_{\phi}(u) \neq C_{\phi}(v)$ for any pair of adjacent vertices u and v. Two adjacent vertices u and v are conflict if $C_{\phi}(u) = C_{\phi}(v)$. If there is no confusion in the context, we usually omit the letter ϕ in $C_{\phi}(v)$. A graph G is normal if it contains no isolated edges. Clearly, G has an avd-coloring if and only if G is normal. Thus, we always assume that G is normal in the following. The *adjacent vertex distinguishing chromatic index* $\chi'_a(G)$ of a graph G is the smallest integer k such that G has a k-avd-coloring.

Zhang, Liu and Wang [12] first introduced and investigated the adjacent vertex distinguishing edge coloring of graphs (named as *adjacent strong edge coloring*). Based on the argument for some special classes of graphs, they proposed the following challenging conjecture:

Conjecture 1. If G is a connected graph with $|V(G)| \ge 3$ and $G \ne C_5$, then $\chi'_a(G) \le \Delta + 2$.

Balister et al. [1] confirmed Conjecture 1 for all bipartite graphs and graphs with $\Delta = 3$, and proved that if G is a normal graph with the (vertex) chromatic number k, then $\chi'_a(G) \leq \Delta + O(\log k)$. Using a powerful probabilistic method, Hatami [4] showed that every graph G with $\Delta > 10^{20}$ has $\chi'_a(G) \le \Delta + 300$. Edwards et al. [3] proved that $\chi'_a(G) \le \Delta + 1$ if G is

* Corresponding author. E-mail address: wwf@zjnu.cn (W. Wang).

http://dx.doi.org/10.1016/j.disc.2014.10.010 0012-365X/© 2014 Elsevier B.V. All rights reserved.

a bipartite planar graph with $\Delta \ge 12$. Wang and Wang [8] verified Conjecture 1 for the class of graphs with the smaller maximum average degree, and their results were further extended by Hocquard and Montassier [5,6]. More recently, it was characterized in [9] that the adjacent vertex distinguishing chromatic index of a K_4 -minor-free graph G with $\Delta \ge 5$ is equal to Δ or $\Delta + 1$. For planar graphs, Horñák et al. [7] proved that $\chi'_a(G) \le \Delta + 2$ for planar graphs with maximum degree at least 12. Bu et al. [2] showed that if G is a planar graph with $g(G) \ge 6$, then $\chi'_a(G) \le \Delta + 2$. This result was improved to the case $g(G) \ge 5$ [10]. Further, it was shown in [11] that if G is a planar graph with $g(G) \ge 4$ and $\Delta \ge 6$, then $\chi'_a(G) \le \Delta + 2$. In this paper, we will determine the adjacent vertex distinguishing chromatic indices of planar graphs with $\Delta \ge 12$ and

in this paper, we will determine the adjacent vertex distinguishing chromatic indices of planar graphs with $\Delta \ge 12$ and without 3-cycles, which reinforces obviously the result of [3]. More precisely, we show the following.

Theorem 2. Suppose that *G* is a connected planar graph without 3-cycles.

(A) Let $T(G) = \max\{12, \Delta + 1\}$, then $\chi'_a(G) \le T(G)$.

(B) If $\Delta \ge 12$, then $\Delta \le \chi'_a(G) \le \Delta + 1$, and $\chi'_a(G) = \Delta + 1$ if and only if G contains two adjacent vertices of degree Δ .

To obtain our main result, we need to introduce some notations. Suppose that *H* is a subgraph of a given plane graph *G*. For $x \in V(H) \cup F(H)$, let $d_H(x)$ denote the degree of x in *H*. For a face $f \in F(H)$, we use b(f) to denote the boundary walk of f and write $f = [u_1u_2 \dots u_m]$ if u_1, u_2, \dots, u_m are the vertices of b(f) in clockwise order. Repeated occurrences of a vertex are allowed. A vertex of degree k (at least k, at most k, resp.) is called a k-vertex (k^+ -vertex, k^- -vertex, resp.). We use $N_k^H(v)$ to denote the set of k-vertices adjacent to v in H, and $n_k^H(v) = |N_k^H(v)|$. Similarly, we can define $n_{k^+}^H(v)$ and $n_{k^-}^H(v)$. Let $m_k^H(f)$ denote the number of k-vertices incident to a face f. If there is no confusion, we usually omit the letter G in $d_G(x)$, $n_k^G(x)$, $n_{k^+}^G(x)$ and $n_{k^-}^G(x)$. For two positive integers p, q with p < q, we use [p, q] to denote the set of all integers between p and q (including p and q).

2. Proof of Theorem 2(A)

2.1. Unavoidable configurations

Our proof proceeds by *reductio ad absurdum*. Assume that *G* is a counterexample to Theorem 2(A) such that |V(G)| + |E(G)| is as small as possible. Obviously, *G* is connected. We may assume that $\Delta \ge 4$ by a result in [1].

With a similar argument as for Claims 1–3 in [11], we can derive the following Claims 1–3.

Claim 1. No 1-vertex is adjacent to a 6⁻-vertex.

Remark 1. By Claim 1, for any edge $e \in E(G)$, G - e is a normal planar graph without 3-cycles, and henceforth $\chi'_a(G - e) \leq T(G - e) \leq T(G)$ by the minimality of G.

Claim 2. No k-vertex, with $2 \le k \le 3$, is adjacent to at least two k-vertices.

A *k*-vertex $v, 2 \le k \le 3$, is called *bad* if it is adjacent to exactly one *k*-vertex. A 4-cycle $x_1x_2x_3x_4x_1$ is called *bad* if $d(x_1) = d(x_3) = 2$.

Claim 3. No 2-vertex is adjacent to a 3-vertex.

In what follows, we say that a recoloring for E(G) is *reasonable* if it gives a proper edge coloring and no pairs of adjacent conflicting vertices are produced. Let $C = \{1, 2, ..., T(G)\}$ denote a set of T(G) colors.

Claim 4. (1) Every edge uv with d(u) = d(v) = 2 is in a 4-cycle. (2) No 5-cycle contains three 2-vertices.

Proof. (1) Assume to the contrary that uv is not in any 4-cycle. Let u_1 (resp., v_1) be the neighbor of u (resp., v) other than v (resp., u). Then $u_1 \neq v_1$ and $u_1v_1 \notin E(G)$ by the assumption. By Claims 1 and 2, $d(u_1)$, $d(v_1) \geq 3$. Let $H = G - v + uv_1$. Then H is a simple normal planar graph without 3-cycles, which admits a T(G)-avd-coloring ϕ with the color set C by the minimality of G. Note that $\phi(uu_1) \neq \phi(uv_1)$. We extend ϕ to the whole graph G by coloring vv_1 with $\phi(uv_1)$ and uv with a color in $C \setminus \{\phi(uu_1), \phi(uv_1)\}$.

(2) Assume to the contrary that *G* contains a 5-cycle $v_1v_2 \cdots v_5v_1$ such that $d(v_1) = d(v_2) = d(v_4) = 2$ by Claim 2. By Claim 4(1), v_1v_2 is in some 4-cycle, i.e., $v_3v_5 \in E(G)$. It follows that *G* contains a 3-cycle $v_3v_4v_5v_3$, contradicting the assumption. \Box

Claim 5. There is no edge $uv \in E(G)$ such that $d(u) \leq 3$ and $4 \leq d(v) \leq 5$.

Proof. Assume to the contrary that *G* contains such an edge *uv*. Then G - uv has a T(G)-avd-coloring ϕ using the color set *C* by Remark 1. Note that *u* has at most one conflict vertex by Claim 2 and *v* has at most four conflict vertices. Since $|C| \ge 12$ and $|C| - (d(u) - 1) - (d(v) - 1) \ge 6$, we may color *uv* with a color in $C \setminus (C(u) \cup C(v))$ such that neither *u* nor *v* conflicts with its neighbors. \Box

In the proof of Claims 6–9 and 11, we always assume that v is a k-vertex with neighbors v_1, v_2, \ldots, v_k such that $d(v_1) \le d(v_2) \le \cdots \le d(v_k)$. If $d(v_i) = 2$, we use u_i to denote the neighbor of v_i different from v.

Download English Version:

https://daneshyari.com/en/article/4647086

Download Persian Version:

https://daneshyari.com/article/4647086

Daneshyari.com