Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Circle lattice point problem, revisited

Hiroshi Maehara

862-2 Yagi, Nakagusuku, Okinawa 901-2405, Japan

ARTICLE INFO

Article history: Received 4 February 2014 Received in revised form 16 June 2014 Accepted 4 November 2014 Available online 28 November 2014

Keywords: Lattice points Strictly convex region Algebraic curve

ABSTRACT

Let *X* be a compact region of area *n* in the plane. We show that if *X* is a strictly convex region, or a region bounded by an irreducible algebraic curve, then *X* can be translated to a position where it covers exactly *n* lattice points. If *X* is a polygon, or a convex region, then it can be rotated and translated so that it covers exactly *n* lattice points.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 1957, H. Steinhaus posed the following problem [6,8]: Is there a circle in the plane \mathbb{R}^2 that contains in its interior exactly n lattice points, for any given n? (A lattice point means a point whose coordinates are all integers.) W. Sierpinski [7] showed, by noting that the distances from the point $(\sqrt{2}, \frac{1}{3})$ to lattice points are all different, that such a circle can be obtained by adjusting the radius of a circle with center $(\sqrt{2}, \frac{1}{3})$. It seems that Steinhaus proved the following slightly stronger result, see Honsberger [1, p. 118].

Theorem 1 (Steinhaus). If X is a circular disk of area n, then X can be translated so that it covers exactly n lattice points.

It is impossible to replace "a circular disk" in this theorem by "a square". For example, consider the square $[0, \sqrt{3}] \times [0, \sqrt{3}]$ of area 3. When we translate this square, the number of lattice points covered by the square is clearly represented as $m \times n$, where $1 \le m, n \le 2$, that is, the number is either 1×1 or 1×2 or 2×2 .

Now, by what kind of figures can we replace "a circular disk" in Theorem 1? We show the following.

- (i) It is possible to replace "a circular disk" in Theorem 1 by "a strictly convex region" (i.e., a compact convex region whose boundary contains no line segment), and by "a region bounded by an irreducible algebraic curve".
- (ii) For "a (non-strict) convex region" and "a polygon", similar results as Theorem 1 also hold if we allow rotations besides translations. Namely, if their areas are n, then they can be rotated and translated in \mathbb{R}^2 so that they cover exactly n lattice points.

The case of polygon is generalized to higher dimensions in [3]: Every *d*-dimensional polyhedron of volume *n* can be rotated and translated in \mathbb{R}^d so that it contains exactly *n* lattice points.

Lattice points on a circle and quadratic curves in the plane are considered in [2,4,5].

http://dx.doi.org/10.1016/j.disc.2014.11.004 0012-365X/© 2014 Elsevier B.V. All rights reserved.

E-mail address: hmaehara@edu.u-ryukyu.ac.jp.

2. Main theorem

For a point set $X \subset \mathbb{R}^2$ and a point $v \in \mathbb{R}^2$, let v + X denote the translate of X along \vec{v} , and X^* denote the set that is symmetric to X with respect to the origin O.

A planar curve *C* is called *lattice-generic* if $C \cap (p + C)$ is a finite set for every lattice point $p \neq 0$. For example, circles and ellipses are lattice-generic. Note that if a curve *C* is lattice-generic, then $(p+C) \cap (q+C)$ is also a finite set for every distinct lattice points *p*, *q*. Indeed, $q - p \neq 0$ implies that $C \cap (q - p + C)$ is a finite set, and hence its translate $(p + C) \cap (q + C)$ is also a finite set.

It is clear that if C is lattice-generic, then C^* is also lattice-generic. Note that for a curve C and two points $u, v \in \mathbb{R}^2$, we have

$$v \in u + C \Leftrightarrow v - u \in C \Leftrightarrow u - v \in C^* \Leftrightarrow u \in v + C^*$$

The following is the main theorem in this paper.

Theorem 2. If *X* is a compact region of area *n* bounded by a lattice-generic closed curve *C*, then it is possible to translate *X* to a position where it covers exactly *n* lattice points.

To prove this theorem, we use Blichfeldt's lemma.

Lemma 1 (Blichfeldt). If a planar bounded region X has area n, then it is possible to translate X to a position where it covers at least n lattice points, and it is also possible to translate X to a position where it covers at most n lattice points.

Intuitive proofs of this lemma are given in Honsberger [1] and Steinhaus [9].

Proof of Theorem 2. Let X° denote the interior of *X*. Since $area(X^{\circ}) = area(X) = n$, it follows from Lemma 1 that there are $u_0, u_1 \in \mathbb{R}^2$ such that

$$|(u_0 + X) \cap \mathbb{Z}^2| \le n, \qquad |(u_1 + X^\circ) \cap \mathbb{Z}^2| \ge n.$$
(2)

Let Q be a square that contains u_0 , u_1 . The set S defined by

$$S = \{ p \in \mathbb{Z}^2 : (p + C^*) \cap Q \neq \emptyset \}$$

is a finite set. Since C* is also lattice-generic, the set F defined by

$$F = \{ \{Q \cap (p + C^*) \cap (q + C^*) : p, q \in S, p \neq q \}$$

is also a finite set. Notice that since *X* is compact, the minimum distance δ from a lattice point lying in the exterior of *X* to *C* is positive. Hence for any point *u* within the distance $\delta/2$ from u_0 , we have $|(u + X) \cap \mathbb{Z}^2| \leq n$. So, by replacing u_0 with an appropriate point near to u_0 if necessary, we may suppose $u_0 \notin F$. Similarly, we may suppose that $u_1 \notin F$. Since Q - F is path-connected, we can connect u_0 and u_1 by a simple curve *J* in Q - F. Note that if $p, q \in x + C$ for some $p, q \in \mathbb{Z}^2, p \neq q$, then $x \in (p + C^*) \cap (q + C^*)$ by (1). Hence, if $x \in J$, then at most one lattice point lies on x + C. Therefore, when *x* moves along *J* from u_0 to u_1 , the number of lattice points $|(x + X) \cap \mathbb{Z}^2|$ changes one by one. Therefore, we can deduce from (2) that there exists $x \in J$ such that $|(x + X) \cap \mathbb{Z}^2| = n$. \Box

3. Application

3.1. Plane algebraic curves

An (affine plane) algebraic curve in \mathbb{R}^2 is the set defined by an equation f(x, y) = 0, where $f(x, y) \in \mathbb{R}[x, y]$. For example, quadratic curves are algebraic curves. If *C* is an algebraic curve, then so are v + C and C^* . If f(x, y) is irreducible in $\mathbb{R}[x, y]$, then the algebraic curve defined by *f* is called an *irreducible algebraic curve*. If *C* is an irreducible algebraic curve, then so are v + C and C^* . By Bézout's theorem, if two irreducible algebraic curves share infinitely many points in common, then the curves coincide completely. From this it follows that irreducible algebraic curves other than lines are lattice-generic.

Corollary 1. *If a compact region bounded by an irreducible algebraic curve has area n, then it is possible to translate X to a position where it covers exactly n lattice points.*

3.2. Polygons

Note that a polygon is not necessarily a convex polygon. Let SO(2) denote the rotation group of the plane \mathbb{R}^2 around the origin. Each $\sigma \in SO(2)$ is a linear transformation of \mathbb{R}^2 .

(1)

Download English Version:

https://daneshyari.com/en/article/4647088

Download Persian Version:

https://daneshyari.com/article/4647088

Daneshyari.com