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a b s t r a c t

Let X be a compact region of area n in the plane. We show that if X is a strictly convex
region, or a region bounded by an irreducible algebraic curve, then X can be translated to a
position where it covers exactly n lattice points. If X is a polygon, or a convex region, then
it can be rotated and translated so that it covers exactly n lattice points.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 1957, H. Steinhaus posed the following problem [6,8]: Is there a circle in the planeR2 that contains in its interior exactly
n lattice points, for any given n? (A lattice point means a point whose coordinates are all integers.) W. Sierpinski [7] showed,
by noting that the distances from the point (

√
2, 1

3 ) to lattice points are all different, that such a circle can be obtained by
adjusting the radius of a circle with center (

√
2, 1

3 ). It seems that Steinhaus proved the following slightly stronger result,
see Honsberger [1, p. 118].

Theorem 1 (Steinhaus). If X is a circular disk of area n, then X can be translated so that it covers exactly n lattice points.

It is impossible to replace ‘‘a circular disk’’ in this theorem by ‘‘a square’’. For example, consider the square [0,
√
3] ×

[0,
√
3] of area 3. When we translate this square, the number of lattice points covered by the square is clearly represented

asm × n, where 1 ≤ m, n ≤ 2, that is, the number is either 1 × 1 or 1 × 2 or 2 × 2.
Now, by what kind of figures can we replace ‘‘a circular disk’’ in Theorem 1? We show the following.

(i) It is possible to replace ‘‘a circular disk’’ in Theorem 1 by ‘‘a strictly convex region’’ (i.e., a compact convex region whose
boundary contains no line segment), and by ‘‘a region bounded by an irreducible algebraic curve’’.

(ii) For ‘‘a (non-strict) convex region’’ and ‘‘a polygon’’, similar results as Theorem 1 also hold if we allow rotations besides
translations. Namely, if their areas are n, then they can be rotated and translated in R2 so that they cover exactly n lattice
points.

The case of polygon is generalized to higher dimensions in [3]: Every d-dimensional polyhedron of volume n can be
rotated and translated in Rd so that it contains exactly n lattice points.

Lattice points on a circle and quadratic curves in the plane are considered in [2,4,5].
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2. Main theorem

For a point set X ⊂ R2 and a point v ∈ R2, let v + X denote the translate of X along v⃗, and X∗ denote the set that is
symmetric to X with respect to the origin O.

A planar curve C is called lattice-generic if C ∩ (p+ C) is a finite set for every lattice point p ≠ O. For example, circles and
ellipses are lattice-generic. Note that if a curve C is lattice-generic, then (p+C)∩ (q+C) is also a finite set for every distinct
lattice points p, q. Indeed, q − p ≠ O implies that C ∩ (q − p + C) is a finite set, and hence its translate (p + C) ∩ (q + C) is
also a finite set.

It is clear that if C is lattice-generic, then C∗ is also lattice-generic. Note that for a curve C and two points u, v ∈ R2, we
have

v ∈ u + C ⇔ v − u ∈ C ⇔ u − v ∈ C∗
⇔ u ∈ v + C∗. (1)

The following is the main theorem in this paper.

Theorem 2. If X is a compact region of area n bounded by a lattice-generic closed curve C, then it is possible to translate X to a
position where it covers exactly n lattice points.

To prove this theorem, we use Blichfeldt’s lemma.

Lemma 1 (Blichfeldt). If a planar bounded region X has area n, then it is possible to translate X to a position where it covers at
least n lattice points, and it is also possible to translate X to a position where it covers at most n lattice points.

Intuitive proofs of this lemma are given in Honsberger [1] and Steinhaus [9].

Proof of Theorem 2. Let X◦ denote the interior of X . Since area(X◦) = area(X) = n, it follows from Lemma 1 that there are
u0, u1 ∈ R2 such that

|(u0 + X) ∩ Z2
| ≤ n, |(u1 + X◦) ∩ Z2

| ≥ n. (2)

Let Q be a square that contains u0, u1. The set S defined by

S = {p ∈ Z2
: (p + C∗) ∩ Q ≠ ∅}

is a finite set. Since C∗ is also lattice-generic, the set F defined by

F =


{Q ∩ (p + C∗) ∩ (q + C∗) : p, q ∈ S, p ≠ q}

is also a finite set. Notice that since X is compact, the minimum distance δ from a lattice point lying in the exterior of X to
C is positive. Hence for any point u within the distance δ/2 from u0, we have |(u + X) ∩ Z2

| ≤ n. So, by replacing u0 with
an appropriate point near to u0 if necessary, we may suppose u0 ∉ F . Similarly, we may suppose that u1 ∉ F . Since Q − F is
path-connected, we can connect u0 and u1 by a simple curve J in Q − F . Note that if p, q ∈ x + C for some p, q ∈ Z2, p ≠ q,
then x ∈ (p + C∗) ∩ (q + C∗) by (1). Hence, if x ∈ J , then at most one lattice point lies on x + C . Therefore, when x moves
along J from u0 to u1, the number of lattice points |(x+X)∩Z2

| changes one by one. Therefore, we can deduce from (2) that
there exists x ∈ J such that |(x + X) ∩ Z2

| = n. �

3. Application

3.1. Plane algebraic curves

An (affine plane) algebraic curve in R2 is the set defined by an equation f (x, y) = 0, where f (x, y) ∈ R[x, y]. For example,
quadratic curves are algebraic curves. If C is an algebraic curve, then so are v + C and C∗. If f (x, y) is irreducible in R[x, y],
then the algebraic curve defined by f is called an irreducible algebraic curve. If C is an irreducible algebraic curve, then so are
v + C and C∗. By Bézout’s theorem, if two irreducible algebraic curves share infinitely many points in common, then the
curves coincide completely. From this it follows that irreducible algebraic curves other than lines are lattice-generic.

Corollary 1. If a compact region bounded by an irreducible algebraic curve has area n, then it is possible to translate X to a
position where it covers exactly n lattice points.

3.2. Polygons

Note that a polygon is not necessarily a convex polygon. Let SO(2) denote the rotation group of the plane R2 around the
origin. Each σ ∈ SO(2) is a linear transformation of R2.
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