Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Circle lattice point problem, revisited

Hiroshi Maehara

862-2 Yagi, Nakagusuku, Okinawa 901-2405, Japan

a r t i c l e i n f o

Article history: Received 4 February 2014 Received in revised form 16 June 2014 Accepted 4 November 2014 Available online 28 November 2014

Keywords: Lattice points Strictly convex region Algebraic curve

a b s t r a c t

Let *X* be a compact region of area *n* in the plane. We show that if *X* is a strictly convex region, or a region bounded by an irreducible algebraic curve, then *X* can be translated to a position where it covers exactly *n* lattice points. If *X* is a polygon, or a convex region, then it can be rotated and translated so that it covers exactly *n* lattice points.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 1957, H. Steinhaus posed the following problem [\[6](#page--1-0)[,8\]](#page--1-1): Is there a circle in the plane \R^2 that contains in its interior exactly *n* lattice points, for any given *n*? (A lattice point means a point whose coordinates are all integers.) W. Sierpinski [\[7\]](#page--1-2) showed, by noting that the distances from the point $(\sqrt{2}, \frac{1}{3})$ to lattice points are all different, that such a circle can be obtained by adjusting the radius of a circle with center ($\sqrt{2}$, $\frac{1}{3}$). It seems that Steinhaus proved the following slightly stronger result, see Honsberger [\[1,](#page--1-3) p. 118].

Theorem 1 (*Steinhaus*)**.** *If X is a circular disk of area n, then X can be translated so that it covers exactly n lattice points.*

It is impossible to replace "a circular disk" in this theorem by "a square". For example, consider the square [0, $\sqrt{3}] \times$ $[0, \sqrt{3}]$ of area 3. When we translate this square, the number of lattice points covered by the square is clearly represented as $m \times n$, where $1 \le m$, $n \le 2$, that is, the number is either 1×1 or 1×2 or 2×2 .

Now, by what kind of figures can we replace ''a circular disk'' in [Theorem 1?](#page-0-0) We show the following.

- (i) It is possible to replace ''a circular disk'' in [Theorem 1](#page-0-0) by ''a strictly convex region'' (i.e., a compact convex region whose boundary contains no line segment), and by ''a region bounded by an irreducible algebraic curve''.
- (ii) For ''a (non-strict) convex region'' and ''a polygon'', similar results as [Theorem 1](#page-0-0) also hold if we allow rotations besides translations. Namely, if their areas are *n*, then they can be rotated and translated in R 2 so that they cover exactly *n* lattice points.

The case of polygon is generalized to higher dimensions in [\[3\]](#page--1-4): Every *d*-dimensional polyhedron of volume *n* can be rotated and translated in \mathbb{R}^d so that it contains exactly *n* lattice points.

Lattice points on a circle and quadratic curves in the plane are considered in [\[2,](#page--1-5)[4](#page--1-6)[,5\]](#page--1-7).

<http://dx.doi.org/10.1016/j.disc.2014.11.004> 0012-365X/© 2014 Elsevier B.V. All rights reserved.

E-mail address: [hmaehara@edu.u-ryukyu.ac.jp.](mailto:hmaehara@edu.u-ryukyu.ac.jp)

2. Main theorem

For a point set $X \subset \mathbb{R}^2$ and a point $v \in \mathbb{R}^2$, let $v + X$ denote the translate of X along \vec{v} , and X^* denote the set that is symmetric to *X* with respect to the origin *O*.

A planar curve *C* is called *lattice-generic* if $C \cap (p + C)$ is a finite set for every lattice point $p \neq 0$. For example, circles and ellipses are lattice-generic. Note that if a curve *C* is lattice-generic, then (*p*+*C*)∩(*q*+*C*) is also a finite set for every distinct lattice points *p*, *q*. Indeed, $q - p \neq 0$ implies that $C \cap (q - p + C)$ is a finite set, and hence its translate $(p + C) \cap (q + C)$ is also a finite set.

It is clear that if *C* is lattice-generic, then C^* is also lattice-generic. Note that for a curve *C* and two points $u, v \in \R^2$, we have

$$
v \in u + C \Leftrightarrow v - u \in C \Leftrightarrow u - v \in C^* \Leftrightarrow u \in v + C^*.
$$
\n⁽¹⁾

The following is the main theorem in this paper.

Theorem 2. *If X is a compact region of area n bounded by a lattice-generic closed curve C, then it is possible to translate X to a position where it covers exactly n lattice points.*

To prove this theorem, we use Blichfeldt's lemma.

Lemma 1 (*Blichfeldt*)**.** *If a planar bounded region X has area n, then it is possible to translate X to a position where it covers at least n lattice points, and it is also possible to translate X to a position where it covers at most n lattice points.*

Intuitive proofs of this lemma are given in Honsberger [\[1\]](#page--1-3) and Steinhaus [\[9\]](#page--1-8).

Proof of Theorem 2. Let X° denote the interior of *X*. Since *area*(X°) = *area*(X) = *n*, it follows from [Lemma 1](#page-1-0) that there are $u_0, u_1 \in \mathbb{R}^2$ such that

$$
|(u_0 + X) \cap \mathbb{Z}^2| \le n, \qquad |(u_1 + X^{\circ}) \cap \mathbb{Z}^2| \ge n. \tag{2}
$$

Let *Q* be a square that contains u_0 , u_1 . The set *S* defined by

S = { $p \in \mathbb{Z}^2$: ($p + C^*$) ∩ $Q \neq \emptyset$ }

is a finite set. Since C^{*} is also lattice-generic, the set *F* defined by

$$
F = \bigcup \{ Q \cap (p + C^*) \cap (q + C^*) : p, q \in S, p \neq q \}
$$

is also a finite set. Notice that since *X* is compact, the minimum distance δ from a lattice point lying in the exterior of *X* to *C* is positive. Hence for any point *u* within the distance $\delta/2$ from u_0 , we have $|(u + X) \cap \mathbb{Z}^2| \le n$. So, by replacing u_0 with an appropriate point near to u_0 if necessary, we may suppose $u_0 \notin F$. Similarly, we may suppose that $u_1 \notin F$. Since $Q - F$ is path-connected, we can connect u_0 and u_1 by a simple curve *J* in $Q-F$. Note that if $p, q \in x+C$ for some $p, q \in \mathbb{Z}^2$, $p \neq q$, then $x \in (p + C^*) \cap (q + C^*)$ by (1). Hence, if $x \in J$, then at most one lattice point lies on $x + C$. Therefore, when x moves along *J* from u_0 to u_1 , the number of lattice points $|(x+X)\cap\mathbb{Z}^2|$ changes one by one. Therefore, we can deduce from (2) that there exists $x \in J$ such that $|(x + X) \cap \mathbb{Z}^2| = n$.

3. Application

3.1. Plane algebraic curves

An (affine plane) algebraic curve in \mathbb{R}^2 is the set defined by an equation $f(x, y) = 0$, where $f(x, y) \in \mathbb{R}[x, y]$. For example, quadratic curves are algebraic curves. If *C* is an algebraic curve, then so are $v + C$ and C^* . If $f(x, y)$ is irreducible in $\mathbb{R}[x, y]$, then the algebraic curve defined by *f* is called an *irreducible algebraic curve*. If *C* is an irreducible algebraic curve, then so are *v* + *C* and *C*^{*}. By Bézout's theorem, if two irreducible algebraic curves share infinitely many points in common, then the curves coincide completely. From this it follows that irreducible algebraic curves other than lines are lattice-generic.

Corollary 1. *If a compact region bounded by an irreducible algebraic curve has area n, then it is possible to translate X to a position where it covers exactly n lattice points.*

3.2. Polygons

Note that a polygon is not necessarily a convex polygon. Let SO(2) denote the rotation group of the plane \R^2 around the origin. Each $\sigma \in SO(2)$ is a linear transformation of \mathbb{R}^2 .

Download English Version:

<https://daneshyari.com/en/article/4647088>

Download Persian Version:

<https://daneshyari.com/article/4647088>

[Daneshyari.com](https://daneshyari.com)