ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

CrossMark

Bounds for generalized Sidon sets

^b Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

ARTICLE INFO

Article history:
Received 20 November 2013
Received in revised form 10 October 2014
Accepted 11 November 2014
Available online 29 November 2014

Keywords: Sidon sets Generalized Sidon sets Zarankiewicz problem Norm graphs

ABSTRACT

Let Γ be an abelian group and $g \geq h \geq 2$ be integers. A set $A \subset \Gamma$ is a $C_h[g]$ -set if given any set $X \subset \Gamma$ with |X| = h, and any set $\{k_1, \ldots, k_g\} \subset \Gamma$, at least one of the translates $X + k_i$ is not contained in A. For any $g \geq h \geq 2$, we prove that if $A \subset \{1, 2, \ldots, n\}$ is a $C_h[g]$ -set in \mathbb{Z} , then $|A| \leq (g-1)^{1/h}n^{1-1/h} + O(n^{1/2-1/2h})$. We show that for any integer $n \geq 1$, there is a $C_3[3]$ -set $A \subset \{1, 2, \ldots, n\}$ with $|A| \geq (4^{-2/3} + o(1))n^{2/3}$. We also show that for any odd prime p, there is a $C_3[3]$ -set $A \subset \mathbb{F}_p^3$ with $|A| \geq p^2 - p$, which is asymptotically best possible. Using the projective norm graphs from extremal graph theory, we show that for each integer $h \geq 3$, there is a $C_h[h!+1]$ -set $A \subset \{1,2,\ldots,n\}$ with $|A| \geq (c_h+o(1))n^{1-1/h}$. A set A is a weak $C_h[g]$ -set if we add the condition that the translates $X + k_1, \ldots, X + k_g$ are all pairwise disjoint. We use the probabilistic method to construct weak $C_h[g]$ -sets in $\{1,2,\ldots,n\}$ for any $g \geq h \geq 2$. Lastly we obtain upper bounds on infinite $C_h[g]$ -sequences. We prove that for any infinite $C_h[g]$ -sequence $A \subset \mathbb{N}$, we have $A(n) = O(n^{1-1/h}(\log n)^{-1/h})$ for infinitely many n, where $A(n) = |A \cap \{1,2,\ldots,n\}|$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given an integer $n \ge 1$, write [n] for $\{1, 2, \ldots, n\}$. Let Γ be an abelian group and $g \ge h \ge 2$ be integers. A set $A \subset \Gamma$ is a $C_h[g]$ -set if given any set $X \subset \Gamma$ with |X| = h, and any set $\{k_1, \ldots, k_g\} \subset \Gamma$, at least one of the translates

$$X + k_i := \{x + k_i : x \in X\}$$

is not contained in A. These sets were introduced by Erdős and Harzheim in [8], and they are a natural generalization of the well-studied Sidon sets. A Sidon set is a $C_2[2]$ -set. We will always assume that $g \ge h \ge 2$. The reason for this is that if $X = \{x_1, \ldots, x_h\}$ and $K = \{k_1, \ldots, k_g\}$, then A contains each of the translates $X + k_1, \ldots, X + k_g$ if and only if A contains each of the translates $K + x_1, \ldots, K + x_h$.

Our starting point is a connection between $C_h[g]$ -sets and the famous Zarankiewicz problem from extremal combinatorics. Given integers m, n, s, t with $m \ge s \ge 1$ and $n \ge t \ge 1$, let z(m, n, s, t) be the largest integer N such that there is an $m \times n$ 0–1 matrix M, that contains N 1's, and does not contain an $s \times t$ submatrix of all 1's. Determining z(m, n, s, t) is known as the problem of Zarankiewicz.

Proposition 1. Let Γ be a finite abelian group of order n. Let $A \subset \Gamma$ and let $g \ge h \ge 2$ be integers. If A is a $C_h[g]$ -set in Γ , then

$$n|A| \le z(n, n, g, h). \tag{1}$$

E-mail addresses: x2peng@ucsd.edu (X. Peng), rafael.tesoro@estudiante.uam.es (R. Tesoro), craig.timmons@csus.edu (C. Timmons).

^c Department of Mathematics and Statistics, California State University Sacramento, CA 95189, USA

^{*} Corresponding author.

To see this, let $A \subset \Gamma$ be a $C_h[g]$ -set where $\Gamma = \{b_1, \ldots, b_n\}$ is a finite abelian group of order n. Define an $n \times n$ 0–1 matrix M by putting a 1 in the (i,j)-entry if $b_i + b_j \in A$, and 0 otherwise. A $g \times h$ submatrix of all 1's consists of a set $X = \{x_1, \ldots, x_h\}$ of h distinct elements of Γ , and a sequence k_1, \ldots, k_g of g distinct elements of Γ , such that $x_i + k_j \in A$ for all $1 \le i \le h$, $1 \le j \le g$. There is no such submatrix since A is a $C_h[g]$ -set. Furthermore, each row of M contains |A| 1's so that $n|A| \le z(n, n, g, h)$.

Füredi [10] proved that

$$z(m, n, s, t) < (s - t + 1)^{1/2} n m^{1 - 1/t} + t m^{2 - 2/t} + t n$$
(2)

for any integers $m \ge s \ge t \ge 1$ and $n \ge t$. Therefore, if $A \subset \Gamma$ is a $C_h[g]$ -set and Γ is a finite abelian group of order n, then

$$|A| \le (g - h + 1)^{1/h} n^{1 - 1/h} + h n^{1 - 2/h} + h.$$
 (3)

If $A \subset [n]$ is a $C_h[g]$ -set, then it is not difficult to show that A is a $C_h[g]$ -set in \mathbb{Z}_{2n} , thus by (3),

$$|A| < (g - h + 1)^{1/h} 2^{1 - 1/h} n^{1 - 1/h} + h(2n)^{1 - 2/h} + h.$$

Our first result improves this upper bound.

Theorem 1. If $A \subset [n]$ is a $C_h[g]$ -set with $g \geq h \geq 2$, then

$$|A| \le (g-1)^{1/h} n^{1-1/h} + O\left(n^{1/2-1/2h}\right).$$
 (4)

This theorem is a refinement of the estimate $|A| = O(n^{1-1/h})$ proved by Erdős and Harzheim [8]. Recall that $C_2[2]$ -sets are Sidon sets. Theorem 1 recovers the well-known upper bound for the size of Sidon sets in [n] obtained by Erdős and Turán [9]. In general, $C_2[g]$ -sets are those sets A such that each nonzero difference a - a' with $a, a' \in A$ appears at most g - 1 times. Theorem 1 recovers Corollary 2.1 in [4].

If $A \subset [n]$ is a Sidon set, then for any $g \ge 2$, A is a $C_2[g]$ -set. There are Sidon sets $A \subset [n]$ with $|A| = (1 + o(1))n^{1/2}$ thus the exponent of (4) is correct when h = 2. Motivated by constructions in extremal graph theory, we can show that the exponent of (4) is correct for other values of h.

Theorem 2. Let p be an odd prime and $\alpha \in \mathbb{F}_p$ be chosen to be a quadratic non-residue if $p \equiv 1 \pmod 4$, and a nonzero quadratic residue otherwise. The set

$$A = \{(x_1, x_2, x_3) \in \mathbb{F}_p^3 : x_1^2 + x_2^2 + x_3^2 = \alpha\}$$

is a $C_3[3]$ -set in the group \mathbb{F}_p^3 with $|A| \geq p^2 - p$.

Corollary 1. For any integer $n \ge 1$, there is a $C_3[3]$ -set $A \subset [n]$ with

$$|A| \ge (4^{-2/3} + o(1)) n^{2/3}.$$

By (3), Theorem 2 is asymptotically best possible. It is an open problem to determine the maximum size of a $C_3[3]$ -set in [n].

Proposition 1 suggests that the methods used to construct $K_{g,h}$ -free graphs may be used to construct $C_h[g]$ -sets. Using the norm graphs of Kollár, Rónyai, and Szabó [11], we construct $C_h[h!+1]$ -sets $A \subset [n]$ with $|A| \ge c_h n^{1-1/h}$ for each $h \ge 2$.

Theorem 3. Let $h \ge 2$ be an integer. For any integer n, there is a $C_h[h! + 1]$ -set $A \subset [n]$ with

$$|A| = (1 + o(1)) \left(\frac{n}{2^{h-1}}\right)^{1-1/h}.$$

Using the probabilistic method we can construct sets that are almost $C_h[g]$ for all $g \ge h \ge 2$. A set $A \subset \Gamma$ is a *weak* $C_h[g]$ -set if given any set $X \subset \Gamma$ with |X| = h, and any set $\{k_1, \ldots, k_g\} \subset \Gamma$ such that $X + k_1, \ldots, X + k_g$ are all pairwise disjoint, at least one of the translates $X + k_i$ is not contained in A. Erdős and Harzheim used the probabilistic method to construct weak $C_h[g]$ -sets with $|A| \gg n^{(1-\frac{1}{h})(1-\frac{1}{g})}$. Here we use the alteration method to improve the exponent.

Theorem 4. For any integers $g \ge h \ge 2$, there exists a weak- $C_h[g]$ -set $A \subset [n]$ such that

$$|A| \geq \frac{1}{8} n^{\left(1 - \frac{1}{h}\right)\left(1 - \frac{1}{g}\right)\left(1 + \frac{1}{hg - 1}\right)}.$$

It should be noted that for h fixed, Theorem 4 gives $|A| \ge n^{1-\frac{1}{h}-\epsilon}$ for g sufficiently large, being a lower bound close to the exponent given in Theorem 1.

Download English Version:

https://daneshyari.com/en/article/4647091

Download Persian Version:

https://daneshyari.com/article/4647091

Daneshyari.com