

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Geometric constructions of two-character sets

Francesco Pavese

Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, I-85100 Potenza, Italy

ARTICLE INFO

Article history:
Received 2 April 2014
Received in revised form 21 October 2014
Accepted 13 November 2014
Available online 6 December 2014

Keywords: Two-character sets Hermitian variety Quadric Symplectic generalized quadrangle Tight set

ABSTRACT

A two-character set in a finite projective space is a set of points with the property that the intersection number with any hyperplanes only takes two values. In this paper constructions of some two-character sets are given. In particular, infinite families of tight sets of the symplectic generalized quadrangle $W(3,q^2)$ and the Hermitian surface $\mathcal{H}(3,q^2)$ are provided. A quasi-Hermitian variety \mathcal{H} in $PG(r,q^2)$ is a combinatorial generalization of the (non-degenerate) Hermitian variety $\mathcal{H}(r,q^2)$ so that \mathcal{H} and $\mathcal{H}(r,q^2)$ have the same number of points and the same intersection numbers with hyperplanes. Here we construct two families of quasi-Hermitian varieties, for r,q both odd, admitting $P\Gamma O^+(r+1,q)$ and $P\Gamma O^-(r+1,q)$ as automorphisms group.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A strongly regular graph $srg(v,k,\lambda,\mu)$ is a regular graph such that there are constants λ and μ with the property that every pair of adjacent vertices has λ common neighbours and every pair of non-adjacent vertices has μ common neighbours. A two-character set in the projective space PG(r,q) is a set δ of n points with the property that every hyperplane meets δ in either $n-w_1$ or $n-w_2$ points and generates PG(r,q). Then the positive integers w_1 and w_2 are called the weights of the two-character set. Embed PG(r,q) as a hyperplane H in PG(r+1,q). The linear representation graph $\Gamma_r^*(\delta)$ is the graph having as vertices the points of $PG(r+1,q) \setminus H$ and in which two vertices are adjacent whenever the line defined by them meets δ . It follows that $\Gamma_r^*(\delta)$ has $v=q^{r+1}$ vertices and valency k=(q-1)n. Delsarte [8] proved that this graph is strongly regular if δ is a two-character set. The other parameters of the graph $\Gamma_r^*(\delta)$ are $\lambda=k-1+(k-qw_1+1)(k-qw_2+1)$ and $\mu=k+(k-qw_1)(k-qw_2)$. On the other hand, by regarding the coordinates of the elements of δ as columns of the generator matrix of a code δ of length n and dimension n and the two-character set property of δ translates into the fact that the code δ has two weights (w_1 and w_2) [5]. Such a code is said to be a projective two-weight code. The weights of the code are precisely the weights of the two-character set.

A generalized quadrangle of order (s, t) (GQ(s, t) for short) is an incidence structure Q = (P, B, I) of points and lines with the properties that any two points (lines) are incident with at most one line (point), every point is incident with t + 1 lines, every line is incident with s + 1 points, and for any point P and line I which are not incident, there is a unique point on I collinear with P. The standard reference is [13].

Here we will focus on the (classical) generalized quadrangles W(3, q) and $\mathcal{H}(3, q^2)$. The first of these is the incidence structure of all totally isotropic points and totally isotropic lines with respect to a (non-degenerate) symplectic polarity of PG(3, q). It is a generalized quadrangle of order (q, q) with automorphism group $P\Gamma Sp(4, q)$. The generalized quadrangle $\mathcal{H}(3, q^2)$ of order (q^2, q) is the incidence structure of all points and lines of a non-singular Hermitian variety of $PG(3, q^2)$. Its automorphism group is $P\Gamma U(4, q^2)$, see [15] for more details. A set \mathcal{T} of points of a generalized quadrangle of order (s, t)

is an i-tight set, if for every point $P \in \mathcal{T}$, there are s+i points of \mathcal{T} collinear with P, and for every point $P \notin \mathcal{T}$, there are i points of \mathcal{T} collinear with P. A set of points is tight if it is i-tight for some i. An m-ovoid of a generalized quadrangle \mathcal{Q} is a set of points of \mathcal{Q} meeting every line of \mathcal{Q} in exactly m points. The dual concept of an m-ovoid is an m-cover, that is, a set of lines of \mathcal{Q} , say \mathcal{L} , such that every point of \mathcal{Q} lies on exactly m lines of \mathcal{L} . Tight sets and m-ovoids of generalized quadrangles (polar spaces) are well studied objects, as well as their connections with two-character sets [12,4,3]. In Section 2, we prove that an m-cover of W(3,q) gives rise to tight sets of $W(3,q^2)$ and $\mathcal{H}(3,q^2)$. An i-tight set of $W(3,q^2)$ (or $\mathcal{H}(3,q^2)$) is a two-character set, where the intersection numbers with hyperplanes are i and $q^2 + i$.

In the projective space $PG(r,q^2)$ over the finite field $GF(q^2)$, a quasi-Hermitian variety is a two-character set which has the same size and the same intersection numbers with hyperplanes as the non-degenerate Hermitian variety $\mathcal{H}(r,q^2)$. Obviously, a Hermitian variety can be viewed as a classical quasi-Hermitian variety. In [9], the authors constructed two infinite families of non-classical quasi-Hermitian varieties. Both consist of quasi-Hermitian varieties arising from $\mathcal{H}(r,q^2)$ by modifying some point-hyperplane incidences at the points in just one tangent space to the Hermitian variety $\mathcal{H}(r,q^2)$. Other instances of non-classical quasi-Hermitian varieties can be found in [1,2]. The essential idea in [1,2] is to modify many point-hyperplane incidences of the Hermitian variety $\mathcal{H}(r,q^2)$ by using a suitable quadratic transformation φ . In particular, φ maps $\mathcal{H}(r,q^2)$ to a quasi-Hermitian variety of a nonstandard model of $PG(r,q^2)$. As far as we know, these are the only known quasi-Hermitian varieties.

In Section 3, we construct two infinite families of non-classical quasi-Hermitian varieties in $PG(2n+1,q^2)$, q odd. Our quasi-Hermitian varieties have a completely different geometry from those constructed in [9,2,1]. In particular, they are associated in a natural way with the non-singular quadrics (of hyperbolic type or of elliptic type) lying in a Baer subgeometry Σ of $PG(2n+1,q^2)$ isomorphic to PG(2n+1,q). Indeed our quasi-Hermitian varieties are obtained by taking all points on extended lines of Σ which are either tangent to or contained in a non-singular Baer quadric of Σ .

Quasi-Hermitian varieties in $PG(2n+1, q^2)$ are two-character sets, where the characters, that is the intersection numbers with hyperplanes, are

$$\frac{(q^{2n+1}+1)(q^{2n}-1)}{q^2-1},$$

and

$$\frac{(q^{2n+1}+1)(q^{2n}-1)}{q^2-1}+q^{2n}.$$

Our notation and terminology are standard. For generalities on quadrics and Hermitian varieties in projective spaces, the reader is referred to [11,15].

2. Tight sets

We summarize some properties of tight sets of a generalized quadrangle δ of order (s, t), which have been proved in [12]. Let A and B be i-tight and j-tight sets of points of δ , respectively. Then:

- (i) the size of an *i*-tight set of δ is i(s + 1),
- (ii) if $A \subseteq \mathcal{B}$, then $\mathcal{B} \setminus A$ is (j i)-tight,
- (iii) if \mathcal{A} and \mathcal{B} are disjoint, then $\mathcal{A} \cup \mathcal{B}$ is (i + j)-tight,
- (iv) the set of points of δ forms an (st + 1)-tight set, the empty set is 0-tight and the set of points on a line is 1-tight.

Let $\mathcal{H}(3,q^2)$ be a (non-degenerate) Hermitian surface of $PG(3,q^2)$. It is well known that there exists a group G isomorphic to PSp(4,q) embedded in $P\Gamma U(4,q^2)$ as a subfield subgroup, stabilizing a symplectic subquadrangle $W(3,q)\subseteq \Sigma$, embedded in $\mathcal{H}(3,q^2)$. Here Σ is a Baer subgeometry of $PG(3,q^2)$ isomorphic to PG(3,q).

Furthermore, W(3,q) is also embedded as a subquadrangle in a (unique) symplectic quadrangle of $PG(3,q^2)$, say $W(3,q^2)$. In particular, the points of $PG(3,q^2)$ lying on the extended lines of W(3,q) are exactly the points of the Hermitian surface $\mathcal{H}(3,q^2)$, see [15]. From [3, Theorem 8] the group G has three orbits on points of $PG(3,q^2)$, that are W(3,q), $\mathcal{H}(3,q^2) \setminus W(3,q)$ and $W(3,q^2) \setminus \mathcal{H}(3,q^2)$ and each orbit is a tight set of $W(3,q^2)$.

Instances of tight sets of the Hermitian surface $\mathcal{H}(3,q^2)$ are the points covered by partial spreads of $\mathcal{H}(3,q^2)$, embedded symplectic spaces $\mathcal{W}(3,q)$, and those obtained by taking complements and unions of these. In what follows we show that there exist tight sets of $\mathcal{H}(3,q^2)$ which cannot be constructed this way.

Let \mathcal{L} be an m-cover of $\mathcal{W}(3,q)$, i.e., a set of $m(q^2+1)$ lines of $\mathcal{W}(3,q)$ such that every point of $\mathcal{W}(3,q)$ lies on exactly m lines of \mathcal{L} . For every line ℓ of PG(3,q) we denote by $\bar{\ell}$ its extension in $PG(3,q^2)$. Let $\bar{\mathcal{L}}$ be the set of points of $PG(3,q^2)$ lying on the extended lines of \mathcal{L} . Notice that Σ is contained in $\bar{\mathcal{L}}$.

Theorem 2.1. Let \mathcal{L} be an m-cover of $\mathcal{W}(3, q)$, then

- $\bar{\mathcal{L}}$ is an $(m(q^2-q)+q+1)$ -tight set of $\mathcal{W}(3,q^2)$,
- $\bar{\mathcal{L}}$ is an $(m(q^2-q)+q+1)$ -tight set of $\mathcal{H}(3,q^2)$.

Download English Version:

https://daneshyari.com/en/article/4647094

Download Persian Version:

https://daneshyari.com/article/4647094

<u>Daneshyari.com</u>