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a b s t r a c t

We consider the class of trees for which all vertices of degree at least 3 lie on a single in-
duced path of the tree. For such trees, a new superposition principle is proposed to generate
all possible orderedmultiplicity lists for the eigenvalues of symmetric (Hermitian)matrices
whose graph is such a tree. It is shown that no multiplicity lists other than these can occur
and that for two subclasses all such lists do occur. Important contrasts with trees outside
the class are given, and it is shown that several prior conjectures about multiplicity lists,
including the Degree Conjecture, follow from our superposition principle.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Given an undirected graph on n vertices G, we say that an n-by-n real symmetric matrix A = (aij) has graph G if for all
i ≠ j, there is an edge between vertices i and j if and only if aij ≠ 0. We are interested in the spectra of all n-by-n real
symmetric matrices whose graph is a given G, and in particular, in the eigenvalue multiplicities that occur. When a real
symmetric matrix A has been identified for some graph G, we will commonly refer to the eigenvalues of G or some subgraph
of G, by which we mean the eigenvalues of A or of the principle submatrix of A whose rows and columns correspond to
the vertices of the subgraph. For any real symmetric matrix, we refer to the ordered multiplicities as the list obtained by
arranging the distinct eigenvalues in increasing order and listing their multiplicities. Wemay also arrange the multiplicities
in non-increasing order, a list that we call the unordered multiplicities. The set of ordered (unordered) multiplicity lists of
real symmetric matrices whose graph is G is denoted Lo(G) (Lu(G)).

Our focus here will be upon trees, or connected graphs with n−1 edges, and upon orderedmultiplicity lists. (Since every
complex Hermitian matrix whose graph is a tree is diagonally unitarily similar to a real symmetric matrix with the same
graph, there is no loss of generality in considering only symmetric matrices in place of Hermitianmatrices.) Multiplicity lists
for certain classes of trees [8,9,13] and for trees on fewer than 12 vertices have been determined previously. Referring to
any vertex of degree 3 or more as high degree, we consider a very rich class of trees, the linear trees (all high degree vertices
lie on a path—see Definition 8), that includes some previously studied infinite classes of trees, as well as all but a few of the
trees on fewer than 12 vertices. For linear trees, a combinatorial technique (involving a superposition principle) to generate
all ordered multiplicity lists is proposed. The necessity of this proposal is proven in general and sufficiency is proven in
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two major cases: (a) when there are just two high degree vertices and (b) when the linear tree is depth 1. The latter uses a
new application of the implicit function theorem that leads to an independently interesting class of matrices as Jacobians.
The superposition principle generalizes that of [9] used to treat double generalized stars. There seems to be no simpler
way to describe all such multiplicity lists. Finally, the results given are used to verify special cases of some outstanding
conjectures.

2. Background

For convenience, we use the standard submatrix notation. Given an index set α ⊆ {1, . . . , n}, we denote the principle
submatrix of A lying in rows and columns {1, . . . , n} − α (respectively, α) by A(α) (respectively, A[α]). Additionally, A({i})
is abbreviated by A(i). If A is a matrix of graph G, we may use a subgraph of G to specify an index set. For example, A[G] is
simply the matrix A. For any real number λ, we use mA(λ) to denote the multiplicity of λ as an eigenvalue of the matrix A.

The classical Interlacing Theorem is very important to our discussion. We state it here and refer the reader to [4] for a
more thorough description.

Theorem 1 (Interlacing Theorem). Let A be an n-by-n Hermitian matrix with (real) eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn

and suppose A(i) has eigenvalues

µ1 ≤ µ2 ≤ · · · ≤ µn−1

for some i ∈ {1, . . . , n}. Then the eigenvalues satisfy the following inequalities:

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn.

A result following immediately from these inequalities is that, for any λ and i = 1, . . . , n,
mA(λ) − 1 ≤ mA(i)(λ) ≤ mA(λ) + 1.

In the case of trees, we have a very useful theorem coming from previous work in [14,15]. We state it without proof in
the general form developed in [10].

Theorem 2. Let A be a Hermitian matrix whose graph is a tree T , and suppose that there exists a vertex v of T and a real number
λ such that λ is an eigenvalue of both A and A(v). Then
1. there is a vertex v′ of T such that mA(v′)(λ) = mA(λ) + 1;
2. if mA(λ) ≥ 2, then v′ may be chosen so that deg v′

≥ 3 and so that there are at least three components T1, T2, and T3 of T −v′

such that mA[Ti](λ) ≥ 1, i = 1, 2, 3;
3. if mA(λ) = 1, then v′ may be chosen so that deg v′

≥ 2 and so that there are two components T1 and T2 of T − v′ such that
mA[Ti](λ) = 1, i = 1, 2.

For any tree T , we define the path cover number of T to be the minimum number of induced paths of T that cover all
vertices without intersecting. We also define the diameter to be the maximum length of an induced path of T , where the
length of a path refers to the number of nodes in the path. Note that this definition of length differs from the standard
definition which defines the length of a path as the number of edges (one less than the number of nodes), but throughout
we will continue to use the modified definition of length to remain consistent with previous references (e.g. [7,9]).

To demonstrate the relationship between a graph’s structure and its multiplicity lists, we present the following two
theorems from [6,7], respectively:

Theorem 3. Given a tree T , the maximum multiplicity for any single eigenvalue in the multiplicity lists for T is equal to the path
cover number of T .

Theorem 4. Given a tree T , the minimum number of distinct eigenvalues among the real symmetric matrices with graph T is at
least the maximum number of nodes in an induced path of T .

Let l = (l1, . . . , la) be a partition of some integer N , i.e., each li is a positive integer and l1 + · · · + la = N . Two
concepts about partitions will be needed. First, we denote by l∗ = (l∗1, . . . , l

∗

b) the conjugate partition of l, so l∗j is the
number of i’s such that li ≥ j. Note that l∗ is a partition of N with l∗1 ≥ · · · ≥ l∗j . The second concept is majorization. Let
u = (u1, . . . , uc), u1 ≥ · · · ≥ uc , and v = (v1, . . . , vd), v1 ≥ · · · ≥ vd, be ordered partitions of M and N , respectively.
Suppose u1 + · · · + us ≤ v1 + · · · + vs for all s, where us or vs are interpreted as 0 when s is greater than c or d, respectively.
Then we say that v majorizes u if M = N , denoting it as u ≼ v. If M < N , we create a partition ue of N by appending N − M
1’s to u, and then we have ue ≼ v.

We define a generalized star as a tree with at most one vertex of high degree. For each generalized star, we call the high
degree vertex the central vertex, or let any vertex be the central vertex if there are none of high degree. The possible spectra
of matrices whose graph is a generalized star were fully characterized in [9]. An additional result for generalized stars that
we will use concerns the possible upwardmultiplicity lists. For a real symmetric matrix A with graph G, fix a vertex v. Then
λ is an upward eigenvalue of A at v if mA(v)(λ) = mA(λ) + 1, and the multiplicity of λ is called an upward multiplicityof A
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