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a b s t r a c t

Answering a question of Gurevich, Graham proved that, given any δ > 0, for any finite
coloring of the plane, there is a triangle of area δ having all of its three vertices of the same
color. Questions were asked about similar results for parallelograms, rhombuses etc. For
any coloring of the plane, a trapezoid is called monochromatic if its four vertices have the
same color. In this paper, we prove that, for any δ > 0 and any finite coloring of the plane,
there exist infinitely many monochromatic trapezoids of area δ > 0 that are translates of
the same trapezoid. We shall have some related results for triangles.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Before we start discussing the problem considered in this paper, we briefly describe the related area of Euclidean Ramsey
Theorywhichwas developed in the pioneering papers [6–8] of Erdős, Graham,Montgomery, Rothschild, Spencer and Straus.
Here, one considers the problem of determining the finite geometric configurations F in the d-dimensional Euclidean space
Rd which have the property that given a positive integer r , every r-coloring of Rk for some k ≥ d yields a monochromatic
copy (here by a copy onemeans the image under some element in the group of Euclideanmotions ofRk) of the configuration
F . A finite configuration F having the above property is said to be Ramsey. However, in this research, the dimension of the
partitioned space is typically larger, than the dimension of the given configuration F . For an introduction to this areawe refer
to Chapter 7 of themonograph [11] or Chapter 5 of [2]. In connection to the problems taken up in this paper, wemention that
I. Kř1́ž [13] established that all trapezoids are Ramsey. That is, given a set F of four points in some Euclidean space forming
the vertices of a trapezoid, there is some suitably large k such that for every finite coloring of Rk, there is a monochromatic
copy of F ; this generalizes a previous result of Frankl and Rödl [9] for triangles.

However, the questions considered here are about getting certain monochromatic configurations in a fixed dimension.
In the 1970s, Gurevich asked whether for any finite coloring of the plane, there always exists a triangle of unit area such

that all of its vertices have the same color. A triangle having all of its vertices of the same color is simply called amonochro-
matic triangle (for instance, see Graham [11, Chapter 7]) and similarly for other configurations.

In 1980, Graham [10] answered this question positively. In fact, Graham [10,11] proved the following stronger result:
given any δ > 0, for any finite coloring of the plane and any pair of intersecting lines, there exists a monochromatic triangle
of area δ having two sides parallel to the given lines. A short proof of the above result was later given by the first author [1]
exploiting the main idea of Graham. Recently, a nice short proof of Gurevich’s conjecture has been given by Dumitrescu and
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Jiang [5] with a different technique. Graham’s proof yields a straightforward generalization involving vertices of a higher
dimensional simplex. This has been indicated in Graham [11] where questions were asked about similar results for parallel-
ograms, rhombuses, etc. For any coloring of the plane, a trapezoid is calledmonochromatic if its four vertices have the same
color. A similar result for trapezoids was considered by the first author and Rath in [3]. Recently, the proof of themain result
in [3] has been reported as incorrect in [4], where a proof of the following weaker result has been given.

For a positive integer r , given any r-coloring, we are ensured of amonochromatic trapezoid with two sides parallel to the x-axis
and having an area 1

2 (i + j)r! where 2 ≤ i + j ≤ 2r .
However, if one does not insist that two sides of the quadrilateral should be parallel, then it has been proved in the above

paper [4] that given any δ > 0, for any finite coloring of the plane, there is always a quadrilateral of area δ such that one of its
diagonals divides it into two triangles of equal area and all of its four vertices are of the same color.

In this paper, the following results are proved:

Theorem 1. For any δ > 0 and any finite coloring of the plane, there exist infinitely many monochromatic trapezoids of area δ
which are translates of the same trapezoid with two sides parallel to the x-axis.

We shall give a similar result for triangles. To describe these, we introduce the notion of l-triangles. A triangle ABC where
the side BC is divided into l equal parts will be called an l-triangle. For convenience, all of its vertices A, B, C together with
the (l − 1) points on BC dividing it into equal parts are called the vertices of the l-triangle ABC . An l-triangle is called a
monochromatic l-triangle if all of its vertices have the same color.

Theorem 2. Given any positive integer l, for any δ > 0 and any finite coloring of the plane, there exist infinitely manymonochro-
matic l-triangles of area δ which are translates of the same l-triangle.

Remark 1. From the proof of Theorem 1 (resp. Theorem 2), we shall observe that, the vertices of monochromatic trapezoids
(resp. l-triangles) are translates of the same trapezoid (resp. l-triangle) with all of its vertices in

√
δAr (resp. Ar,l), where Ar

and Ar,l are as in Corollaries 1 and 2, respectively.
We would like to pose the following problem here.

Problem 1. For any δ > 0 and any finite coloring of the plane, is there a monochromatic isosceles trapezoid of area δ? If the
answer is affirmative, are there infinitely many congruent monochromatic isosceles trapezoids of area δ?

While themain ingredient in our proofs is the celebrated van derWaerden theorem, ourmethods involve various induced
colorings. For instance, given a finite coloring on the integer points, one can color a subset of points (here often a row of
points) by nonempty subsets of the set of colors which appear in a particular subset. In general, an induced finite coloring on
a row of points can be a set of finitely many parameters each taking finitely many values depending on the given coloring.
In order to apply van der Waerden’s theorem, one looks at horizontal or vertical shifts of these blocks of integer points.
Theorems 3 and 4, in Sections 2 and 3, respectively, involve coloring of the integer points, by suitable scaling, themain results
are obtained for coloring of all the points in the plane. The proof of Theorem 4 is based on the technique of Dumitrescu and
Jiang [5], with a fairly straightforward adaptation that replaces colorings of lines by colorings of line segments (as sets of
integer points) to ensure that the triangle on the integer points has bounded dimensions. The proof of Theorem 3 is a more
sophisticated application of the same techniquewith some additional ideas, and a trick that cancels two equal lengths while
adding the lengths of the parallel lines of the trapezoid involved.

2. Proof of Theorem 1

In order to prove Theorem 1, we prove the following stronger theorem on the integer points; Theorem 1will be deduced
from it by suitable scaling.

Theorem 3. Given any positive integer r, there exist two positive integers Mr and Nr such that, for any r coloring of sets of all
integer points in the plane, there is a monochromatic trapezoid of areaMr with two sides parallel to the x-axis and all of its vertices
being integer points in the square with the diagonal vertices (0, 0) and (Nr ,Nr).
Proof. We will employ the well known van der Waerden theorem ([14], one may also see [12]):

Given positive integers k and r , there exists a positive integer W = W (k, r) such that for any r coloring of the set {1, 2, . . . ,W },
there is a monochromatic arithmetic progression of length k.

For a positive integer r , writing R = r2(r + 1)/2 andW = W (R! + 1, 2R
− 1), we define

Nr := W !r2(r + 1)2 + r,

Mr :=
1
2
R!W !(r + 1).

Let an r coloring of the set of all integer points in the plane be given and {C1, C2, . . . , Cr} be the set of colors. Now, for
integers i, j, consider the set

Li,j := {(i(r + 1) + n, j) : n = 0, 1, . . . , r},

a set consisting of r + 1 consecutive points on a horizontal line.
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