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a b s t r a c t

We show that ‘‘almost all’’ generalized Petersen graphs have total chromatic number 4.
More precisely: for each integer k ≥ 2, there exists an integer N(k) such that, for any
n ≥ N(k), the generalized Petersen graph G(n, k) has total chromatic number 4.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Total Coloring Conjecture states that the total chromatic number of any graph is at most ∆ + 2, where ∆ is the
maximum degree of a graph [1,18]. This conjecture has been proved for cubic graphs, so the total chromatic number of a
cubic graph is either 4 (called Type 1) or 5 (called Type 2) [14,17], see also [5] for a recent concise proof. It is NP-hard to
decide whether a cubic graph is Type 1, even restricted to bipartite cubic graphs [16].

The smallest Type 2 cubic graph is K4 and the smallest Type 2 bipartite cubic graph is K3,3. The Type of all cubic graphs
with order up to 16 is established [3,9] as well as the Type of infinite families of cubic graphs [3,7,11]. So far every known
Type 2 cubic graph contains a square or a triangle, and computational results show that a possible Type 2 cubic graph with
girth greater than 4 must have at least 34 vertices [2].

Furthermore, recent results on the fractional total chromatic number support the evidence that the girth of a graph is
a relevant parameter in the study of total coloring: in particular, it is proved in [10] that if the girth of a cubic graph is
sufficiently large then its fractional total chromatic number is 4. The facts listed above lead us to consider the following
question:

Question 1 (Brinkmann et al. [2]). Does there exist a Type 2 cubic graph with girth greater than 4?

✩ Research was supported by grants from CNPq (Universal 442707/2014-2, PDE 211702/2013-7), CAPES (Math AmSud 021/14) and FAPERJ (Cientistas
do nosso Estado E-26/102.952/2011). G. Mazzuoccolo is supported by a fellowship from the European Project ‘‘INdAM fellowships in mathematics and/or
applications for experienced researchers cofunded by Marie Curie actions’’.
∗ Corresponding author at: COPPE, Universidade Federal do Rio de Janeiro, Brazil.

E-mail address: diana.sasaki@gmail.com (D. Sasaki).

http://dx.doi.org/10.1016/j.disc.2015.12.010
0012-365X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2015.12.010
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2015.12.010&domain=pdf
mailto:diana.sasaki@gmail.com
http://dx.doi.org/10.1016/j.disc.2015.12.010


1472 S. Dantas et al. / Discrete Mathematics 339 (2016) 1471–1475

In this paper, we consider the Type of a well-studied class of cubic graphs, called generalized Petersen graphs [19,13,4]
and denoted G(n, k). It is proved in [3] that G(n, 1) graphs are all Type 1 but G(5, 1). It is easy to verify that for 2 ≤ k ≤

n
2 ,

G(n, k) has girth greater than 4 whenever n ∉ {2k, 3k, 4k}; so one could hope to find an answer to Question 1 among this
family. However, we show here that, for each integer k ≥ 2, there exists an integer N(k) such that, for any n ≥ N(k), the
generalized Petersen graph G(n, k) is Type 1. So, for k ≥ 2, a Type 2 G(n, k) may exist only for n < N(k). This may happen:
G(9, 3) is Type 2 [2]. Nevertheless, our results combined with a computer search [6] show that G(9, 3) is the only Type 2
graph among generalized Petersen graphs G(n, k), for 2 ≤ k ≤ 6.

2. Preliminaries

A semi-graph is a triple G = (V , E, S) where V is the set of vertices of G, E is a set of edges having two distinct endpoints
in V , and S is a set of semi-edges having one endpoint in V (the notion of semi-graph is similar to the one of ‘‘multipole’’
used by other authors [8,12]). We denote an edge having endpoints v and w by vw and a semi-edge having endpoint v as
v·. When vertex v is an endpoint of e ∈ E ∪ S we say that v and e are incident. Two elements of E ∪ S incident to the same
vertex, or two vertices incident to the same edge, are called adjacent.

In this work, we aremainly interested in graphs and semigraphs such that there are exactly three elements (edges and/or
semi-edges) incident to every vertex. These are called cubic graphs and cubic semi-graphs, respectively.

For k ∈ N, a k-vertex-coloring of G is a map CV : V → {1, 2, . . . , k}, such that CV (x) ≠ CV (y) whenever x and y are two
adjacent vertices. Similarly, a k-edge-coloring of G is a map CE : E ∪ S → {1, 2, . . . , k}, such that CE(e) ≠ CE(f ) whenever
e and f are adjacent elements of E ∪ S. A k-total-coloring of G is a map CT : V ∪ E ∪ S → {1, 2, . . . , k}, such that CT

|V is a
vertex-coloring, CT

|E∪S is an edge-coloring, and CT (e) ≠ CT (v) whenever e ∈ E ∪ S, v ∈ V , and e is incident to v.

Definition 1. A proper 4-edge-coloring CE of a cubic semi-graph G = (V , E, S) is called strong 4-edge-coloring if, for each
edge vw ∈ E, we have |{CE(e)|e ∈ E ∪ S, e incident to v or w}| = 4.

Lemma 1 (Brinkmann et al. [2]). Let G = (V , E, S) be a cubic semi-graph. Each strong 4-edge-coloring CE of G can be extended
to a 4-total-coloring CT with CT

|E∪S = CE and, for each 4-total-coloring CT of G, CT
|E∪S is a strong 4-edge-coloring.

Lemma 1 implies that there exists a 4-total-coloring CT of G if and only if there exists a strong 4-edge-coloring CE of G.
Furthermore, a strong 4-edge-coloring has the property that if we assign to each vertex v the color c , which is not used for
the three elements incident to v, we produce a 4-total-coloring of G. In what follows, we say that c is the color induced on v
by the strong 4-edge-coloring.

The next section is devoted to results on total colorings of generalized Petersen graphs, awell-known class of cubic graphs
introduced byWatkins [19]. FollowingWatkins’ notation, the generalized Petersen graphG(n, k), n ≥ 3 and 1 ≤ k ≤ n−1, is
the graph with vertex-set {u0, u1, . . . , un−1, v0, v1, vn−1} and edge-set {uiui+1, uivi, vivi+k : 0 ≤ i ≤ n− 1}, with subscripts
taken modulo n. Thus each G(n, k) is cubic and G(5, 2) is the Petersen graph. Clearly, the graph G(n, k) and the graph
G(n, n − k) are isomorphic and generalized Petersen graphs are usually defined for k < n

2 . Here, we consider k into the
entire interval [1, n − 1] in order to avoid boring specifications along the rest of the paper and, in the case k =

n
2 , we allow

two edges between vi and vi+k.

3. Main results

In this section, we prove that ‘‘almost all’’ generalized Petersen graphs have total chromatic number 4. In order to prove
our main theorem, we need to define the following semi-graph, which we denote by Fl,k, for l ≥ 2k − 1:
• the vertices of Fl,k are u1, u2, . . . , ul, v1, v2, . . . , vl;
• the edges of Fl,k are uiui+1 for 1 ≤ i < l, uivi for 1 ≤ i ≤ l, vivi+k for 1 ≤ i ≤ l − k;
• the semi-edges of Fl,k are divided in two classes, left semi-edges and right semi-edges. Each class contains k + 1 semi-

edges numbered from 0 to k: the 0th left semi-edge is u1·; the ith left semi-edge is vi·, for 1 ≤ i ≤ k; the 0th right semi-edge
is ul·; and the (i − l + k)th right semi-edge is vi·, for l − k + 1 ≤ i ≤ l.

Any semi-graph isomorphic to Fl,k is called a k-frieze of length l. Fig. 3 presents the two 3-friezes F6,3 and F5,3, and the
generalized Petersen graph G(11, 3).

Given two semi-edges x· and y·, the junction of x· and y· means replacing x· and y· by an edge xy. We define themerge of
a k-frieze F of length l and a k-frieze F ′ of length l′ as the k-frieze FF ′ of length l + l′ obtained by the junction of the ith right
semi-edge of F with the ith left semi-edge of F ′ for 0 ≤ i ≤ k. The left semi-edges of FF ′ are those of F and the right ones
are those of F ′. We define the closure of a k-frieze F as the graph obtained by the junction, for each 0 ≤ i ≤ k, of the ith left
semi-edge of F with the ith right semi-edge of F itself. It is easy to check that the closure of a k-frieze of length l > 2k is the
generalized Petersen graph G(l, k).

Given two strong 4-edge-colorings φ and φ′ of k-friezes F = Fl,k and F ′
= Fl′,k respectively, we say that φ is compatible

with φ′ if for each i from 0 to k: the color given by φ to the right ith semi-edge of F is equal to the color given by φ′ to the left
ith semi-edge of F ′; and the color induced by φ on the end-vertex of the right ith semi-edge of F is distinct from the color
induced by φ′ on the end-vertex of the left ith semi-edge of F ′. Then φ and φ′ provide a strong 4-edge-coloring of the merge
of F and F ′.
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