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a b s t r a c t

We study the structure of red–blue edge colorings of complete graphs, with no copies of
the n-cycle Cn in red, and no copies of them-wheelWm = Cm ∗K1 in blue. Our first result is
that, if we take n = m and n odd, in any such coloring, one can delete at most two vertices
to obtain a graph with a vertex-partition into three sets such that the edges inside the
partition classes are red, and edges between partition classes are blue. As a second result,
we obtain bounds for the Ramsey numbers r(C2k+1,W2j) for k < j, which asymptotically
confirm the values of 4j + 1, as conjectured by Zhang, Zhang and Chen.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We study the structure of red–blue edge-colorings in complete graphs, which avoid certain monochromatic subgraphs.
More concretely, we consider the case of odd positive integer n, and the forbidden monochromatic graphs given by the red
n-cycle Cn and the blue n-wheelWn := Cn ∗ K1. Our main result is the following:

Theorem 1. Let k ≥ 6 and N ≥ 5k + 3. If G := KN has a red–blue coloring of its edges in a way such that C2k+1 is not a
red subgraph of G and W2k+1 is not a blue subgraph of G, then there is a partition of V (G) given by {U0,U1,U2,U3} such that
|U0| ≤ 2, |Ui| ≤ 2k for 1 ≤ i ≤ 3; and every edge in G − U0 inside the partition classes {U1,U2,U3} is red, and blue otherwise.

A similar result was obtained by Nikiforov and Schelp [9], considering the case where the forbidden monochromatic
subgraphs are odd cycles. More precisely, they proved that given k ≥ 2 and N ≥ 3k + 2, if a complete graph on N vertices
has a red–blue coloring of its edges in a way such that C2k+1 is neither a red nor a blue subgraph of it, then there is a partition
of its vertices given by {U0,U1,U2} such that |U0| ≤ 1 and the edges inside the partition classes U1 and U2 have one color;
and are colored with the remaining color otherwise.

Our proof of Theorem 1 depends on certain bounds on asymmetric Ramsey numbers. In particular, it is known [4,5,11]
that

r(Cn,Wm) =


2n − 1 for even m,with m ≥ 4, n ≥ 3m/2 − 1,
3n − 2 for odd m,with n ≥ m ≥ 3, (n,m) ≠ (3, 3),
2m + 1 for odd n,with m ≥ 3(n − 1)/2, (n,m) ≠ (3, 3), (n,m) ≠ (3, 4),
3n − 2 for odd n and m;with n < m ≤ 3(n − 1)/2.

Notice that r(Cn,Wm) is not known for odd n and even m with n < m < 3(n − 1)/2. Zhang, Zhang and Chen [11] raised a
conjecture concerning these values.
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Conjecture 2 (Zhang, Zhang and Chen [11]). Let n and m be integers such that n < m, with n odd and m even. Then
r(Cn,Wm) = 2m + 1.

From now on, suppose n and m are integers such that n < m, with n = 2k + 1 and m = 2j. We confirm the previous
conjecture asymptotically in terms of j.

Theorem 3. Let k and j be integers such that 2 < k < j.We have the following bounds for the Ramsey number of the (2k+1)-cycle
versus the 2j-wheel.

(a) If k ≥ 3, then r(C2k+1,W2j) ≤
9
2 j + 1.

(b) If k ≥ 3, then r(C2k+1,W2j) ≤ 4j + 334.

In particular, we will make use of the upper bounds of r(C2k+1,W2k+2) for our proof of Theorem 1. Both bounds of
Theorem 3 follow from a more general type of bound that we state and prove in Section 4.

2. Preliminaries

We fix a little bit of notation. For every graph G, we write |G| and ∥G∥ for its number of vertices and edges respectively.
The length of a path P is ∥P∥, its number of edges. For disjoint sets of vertices A and B, an (A, B)-path is a path with one
endpoint in A, the other in B and no other vertices in A ∪ B. For distinct vertices x and y, an (x, y)-path is an ({x}, {y})-path.
For distinct sets of vertices A and B, a set of vertices S is a (A, B)-separator if every (A, B)-path intersects S. The well-known
Menger’s theorem (see e.g. [6, Chapter 3]) relates the size of a minimum (A, B)-separator with the maximum number of
vertex-disjoint (A, B)-paths.

Theorem 4 (Menger). Let A and B be subsets of vertices of a graph G. The size of any minimum (A, B)-separator in G equals the
maximum number of vertex-disjoint (A, B)-paths in G.

Given a red–blue coloring of the edges of a graph G, let GR be the graph on V (G) containing only the red-colored edges,
similarly define GB as the graph on V (G) containing only the blue-colored edges. Let ER(G) and EB(G) be the set of edges of
GR and GB, respectively.

Definition 5. Let G be a graph. A semiclique is a tuple (W , X), where X ⊆ W ⊆ V (G), X induces a complete subgraph and
the edges in E(W \ X, X) induce a complete bipartite subgraph.

The notion of semicliques will be useful in the proof of Theorem 1. The main property of semicliques is that every pair of
vertices can be joined by paths of various lengths, and that allows us to find cycles of various sizes.

Lemma 6. Let (W , X) a semiclique. Then every pair of distinct vertices in W can be joined by paths of every length between 2
and |X | − 1.

Proof. As X induces a complete subgraph, every pair of distinct vertices in X can be joined by paths of every length between
1 and |X |−1. For distinct pair of vertices inW , not necessarily contained in X , we can use the edges in E(W \X, X) to extend
the mentioned paths or to find a pair of length 2 connecting these vertices, and conclude the result. �

Corollary 7. For every i ∈ {1, 2}, let (Ri, Si) be semicliques in a graph G, such that R1∩R2 = ∅. Suppose that min{|S1|, |S2|} ≥ 3
and that there exist two disjoint edges in E(R1, R2). Then G contains cycles of every length between 6 and |S1| + |S2|.

Proof. Using Lemma 6we can join every two vertices in a semiclique with paths of various lengths. Choosing these vertices
to be the endpoints of two disjoint edges in E(R1, R2) we find cycles of the desired lengths. �

We shall make use of the values of Ramsey numbers for cycles, which are completely known.

Theorem 8 (Faudree and Schelp [8]).We have

r(Cn, Cm) =


6 (n,m) ∈ {(3, 3), (4, 4)},
2n − 1 3 ≤ m ≤ n, odd m, (n,m) ≠ (3, 3),

n +
m
2

− 1 4 ≤ m < n both n,m even, (n,m) ≠ (4, 4),

max

n +

m
2

− 1, 2m − 1


3 ≤ m ≤ n, even m and odd n.

Theorem 9 (Surahmat, Baskoro and Tomescu [10]).We have that r(C2k+1,W2k+1) = 6k + 1, for all integers k ≥ 1.

Next, we need some results on the stability of cycle-forbidding red–blue colorings, as shown by Nikiforov and Schelp [9].
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