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a b s t r a c t

Let G = (V (G), E(G)) be a finite undirected graph without loops and multiple edges,
c(G) = |E(G)|− |V (G)|+ θ(G) be the dimension of cycle spaces of Gwith θ(G) the number
of connected components of G,m(G) be the matching number of G, and η(G) be the nullity
of G. It was shown in Wang and Wong (2014) that the nullity η(G) of G is bounded by an
upper bound and a lower bound as

|V (G)| − 2m(G) − c(G) ≤ η(G) ≤ |V (G)| − 2m(G) + 2c(G).

Graphs with nullity attaining the upper bound have been characterized by Song et al.
(2015). However, the problem of characterization of graphs whose nullity attain the lower
bound is left open till now.

In this paper, we are devoted to solve this open problem, proving that η(G) = |V (G)|−
2m(G)− c(G) if and only if the cycles (if any) of G are pairwise vertex-disjoint and G can be
switched, by a series of operations of deleting a pendant vertex together with its adjacent
vertex, to an induced subgraph of G, which is the disjoint union of c(G) odd cycles and
|V (G)| − 2m(G) − c(G) isolated vertices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite undirected graph without loops and multiple edges. The adjacency matrix A(G) of G with vertex set
V (G) = {vi : 1 ≤ i ≤ n} and edge set E(G) is defined to be an n × n symmetric matrix [aij] such that aij = 1 if vi is adjacent
to vj, and aij = 0 otherwise. The rank r(G) of G is defined to be the rank of A(G) and the nullity η(G) of G is defined to be the
multiplicity of 0 as an eigenvalue of A(G). Obviously,

r(G) + η(G) = |V (G)|.

The dimension of cycle spaces of G, written as c(G), is defined as

c(G) = |E(G)| − |V (G)| + θ(G),

where θ(G) denotes the number of connected components of G. When G is connected, then G is a tree if c(G) = 0; G is a
unicyclic graph if c(G) = 1; and G is a bicyclic graph if c(G) = 2.

A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). Further, H is called an induced subgraph of G if two
vertices of V (H) are adjacent in H if and only if they are adjacent in G. The number of neighbors of a vertex x in G is called
the degree of x, which is written as d(x). If d(x) = 1, we call x a pendant vertex of G. For a subset U of V (G), denote by G−U
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the graph obtained from G by removing the vertices of U together with all edges incident to them. Sometimes we use the
notation G− G1 instead of G− V (G1) if G1 is an induced subgraph of G. A vertex x ∈ V (G) (resp., An edge e ∈ E(G)) is called
a cut-point (resp., cut-edge) of G if the resultant graph G − x (resp., G − e) has more components than those of G. For an
induced subgraph G1 and a vertex x outside G1, the induced subgraph of G with vertex set V (G1) ∪ {x} is simply written as
G1 + x. A matchingM in G is a set of pairwise non-adjacent edges, that is, no two edges share a common vertex. A maximum
matching is a matching that contains the largest possible number of edges. The matching number of G, denoted bym(G), is
the size of a maximummatching. By Cn (resp., Pn, Kn) we denote a cycle (resp., a path, a complete graph) on n vertices.

A subgraphH of G is called an elementary subgraph if each component ofH is a single edge or a cycle. We use p(H) (resp.,
s(H)) to denote the number of components (resp. the number of cycles) in an elementary subgraph H . The characteristic
polynomial of G, denoted by ϕ(G, x), is defined as det(xI − A(G)), where I is an identity matrix of order the same as that of
A(G).

The chemical importance of the nullity of graphs lies in the fact, that within the Höckel molecular orbital model, if the
nullity η(G) of a molecular graph G is positive, then the corresponding chemical compound is highly reactive and unstable,
or nonexistent (see [1,7]). In 1957, Collatz and Sinogowitz [6] posed the problem of characterizing all singular graphs. The
problem is very hard and only some particular results are known (see [3–5,8–22]). In studying above problem, some authors
focused on describing the nullity set of certain class of graphs in terms of the order of graphs. Let Gn be a set of a class of
graphs of order n, and let [0, n] = {0, 1, 2, . . . , n}. A subset N of [0, n] is said to be the nullity set of Gn if η(G) ∈ N for each
G ∈ Gn, and for each k ∈ N there exists at least one graph G ∈ Gn such that η(G) = k. It is well known that the nullity of a
tree T of order n is n− 2m(T ) (see [7]). The nullity set of unicyclic graphs of order n ≥ 5 was proved in [20] to be [0, n− 4].
It was shown in [13] that the nullity set of bicyclic graphs of order n is [0, n − 2]. It was shown in [5] that the nullity set
of tricyclic graphs of order n ≥ 8 is [0, n − 4]. For bipartite graphs of order n it was shown in [8,18] that the nullity set is
{n − 2k : k = 0, 1, 2, . . . , ⌊n/2⌋}.

Recently, Wang et al. [21] obtained the following bounds for the matching number of G:
r(G) − c(G)

2


≤ m(G) ≤


r(G) + 2c(G)

2


.

They also showed that their bounds are best possible by providing examples. The bounds for the matching number can be
rewritten in an equivalent form as bounds for the nullity of G:

Proposition 1.1. [Theorem 1.1, [21]] For any graph G,

|V (G)| − 2m(G) − c(G) ≤ η(G) ≤ |V (G)| − 2m(G) + 2c(G).

Graphs with nullity attaining the upper bound in Proposition 1.1 have been characterized by Song et al. in [19]. In order
to state the main result in [19], we need to introduce an acyclic graph TG (see [19] or [21]) for a graph G whose cycles are
pairwise vertex-disjoint. Let G be a graph with pairwise vertex-disjoint cycles, and let C(G) denote the set of all cycles in G.
The acyclic graph TG is obtained from G by contracting cycles. More specifically, the vertex set V (TG) is taken to be U ∪ WG,
where U consists of all vertices of G that do not lie on a cycle and WG = {vC : C ∈ C(G)}. Two vertices in U are adjacent
in TG if and only if they are adjacent in G, a vertex u ∈ U is adjacent to a vertex vC ∈ WG if and only if u is adjacent (in G)
to a vertex in the cycle C , and vertices vC , vO are adjacent in TG if and only if there exists an edge in G joining a vertex of
C ∈ C(G) to a vertex of O ∈ C(G). It is clear that TG is always acyclic and is a tree when G is connected. Since the cycles of G
are pairwise vertex-disjoint, deleting edges from G, one from each cycle, will result in a forest F and as c(F) = 0 it follows
that G has altogether c(G) cycles. Note that the graph TG −WG (obtained from TG by deleting vertices inWG and the incident
edges) is the same as the graph obtained from G by deleting all cycles and the incident edges.

Proposition 1.2 (Theorem 1.4, [19]). For any graph G, η(G) = |V (G)| − 2m(G) + 2c(G) if and only if the following three
conditions are all satisfied:

(a) Distinct cycles of G (if any) are vertex-disjoint;
(b) The length of each cycle of G (if any) is a multiple of 4;
(c) m(TG) = m(TG − WG) or, equivalently, there exists a maximum matching of TG that does not cover any vertex in WG.

However, the problem of characterization of graphs whose nullity attain the lower bound are left open till now. The
purpose of this work is to characterize graphs G that satisfy η(G) = |V (G)| − 2m(G) − c(G). For convenience, hereafter in
this paper we say a graph G satisfies the minimal nullity condition if η(G) = |V (G)| − 2m(G) − c(G).

In view of the following known result, every acyclic graph satisfies the minimal nullity condition:

Proposition 1.3 ([7]). For every acyclic graph T with at least one vertex, η(T ) = |V (T )| − 2m(T ).

Unicyclic graphs that satisfy theminimal nullity condition are also characterized (due to Guo, Yan and Yeh). The following
result is implicit in [11]:
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