Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Spanning trees with bounded degrees and leaves

Mikio Kano^a, Zheng Yan^{b,*}

^a Ibaraki University, Hitachi, Ibaraki, Japan

^b School of Information and Mathematics, Yangtze University, Jingzhou, PR China

ARTICLE INFO

Article history: Received 11 December 2014 Received in revised form 15 December 2015 Accepted 23 December 2015 Available online 4 February 2016

Keywords: Spanning tree Degree sum Independence number Leaf

1. Introduction

We consider simple graphs, which have neither loops nor multiple edges. For a graph G, let V(G) and E(G) denote the set of vertices and the set of edges of *G*, respectively. We write |G| for the *order* of *G* (i.e., |G| = |V(G)|). For a vertex *v* of *G*, we denote by $\deg_{C}(v)$ the degree of v and by $N_{G}(v)$ the neighborhood of v. Thus $\deg_{C}(v) = |N_{G}(v)|$. An edge joining two vertices u and v is denoted by uv or vu. The independence number and the connectivity of G are denoted by $\alpha(G)$ and $\kappa(G)$. respectively. Let T be a tree. A vertex of T with degree one is often called a *leaf*, and the set of leaves of T is denoted by Leaf (*T*). For a set *X*, the cardinality of *X* is denoted by |X| or #X.

Chvátal and Erdös [2] showed that if $\alpha(G) \leq \kappa(G) + 1$, then G has a hamiltonian path. This result was generalized to a spanning *k*-tree as follows, where a *k*-tree is a tree with maximum degree at most *k*.

Theorem 1 (Neumann-Lara and Rivera-Campo [6]). Let $k \geq 2$ be an integer and G be a connected graph. If $\alpha(G) \leq (k-1)$ $\kappa(G) + 1$, then G has a spanning k-tree.

On the other hand, a hamiltonian path is a spanning tree having exactly two leaves. From this point of view, Win provided a sufficient condition for a graph to have a spanning tree having a small number of leaves.

Theorem 2 (Win [9]). Let k > 2 be an integer and G be a connected graph. If $\alpha(G) < \kappa(G) + k - 1$, then G has a spanning tree having at most k leaves.

Recently, Rivera-Campo obtained a degree sum condition for a graph to have a spanning tree with bounded degree as well as with a small number of leaves.

Corresponding author. E-mail addresses: mikio.kano.math@vc.ibaraki.ac.jp (M. Kano), yanzhenghubei@163.com (Z. Yan). URL: http://gorogoro.cis.ibaraki.ac.jp (M. Kano).

http://dx.doi.org/10.1016/j.disc.2015.12.023 0012-365X/© 2016 Elsevier B.V. All rights reserved.

Rivera-Campo provided a degree sum condition for a graph to have a spanning tree with bounded degrees and leaves. In this paper, we give an independence number condition for a graph to have a spanning tree with bounded degrees and leaves, which also partially solves the conjecture made by Enomoto and Ozeki (2010).

© 2016 Elsevier B.V. All rights reserved.

Theorem 3 (*Rivera-Campo* [8]). Let p, n and d_1, d_2, \ldots, d_p be integers such that $1 \le n \le p - 1$ and $2 \le d_1 \le d_2 \le \cdots \le d_p \le p - 1$. Let G be an n-connected graph of order p with vertex set $V(G) = \{v_1, v_2, \ldots, v_p\}$. If

$$\deg_G(x) + \deg_G(y) \ge p - 1 - \sum_{j=1}^n (d_j - 2)$$

for any non-adjacent vertices x and y of G, then G has a spanning tree T that has at most $\sum_{j=1}^{n} (d_j - 2) + 2$ leaves and satisfies $\deg_{T}(v_i) \leq d_i$ for all i = 1, 2, ..., p.

For a function $f : V(G) \rightarrow \{1, 2, 3, ...\}$, a spanning tree T of a graph G is called a *spanning* f-tree if deg_T(v) $\leq f(v)$ for all vertices v of G. Here, we give a sufficient condition using independence number for a graph to have a spanning f-tree with a small number of leaves. The following is our result.

Theorem 4. Let $n \ge 1$ be an integer. Let G be an n-connected graph and $f : V(G) \rightarrow \{2, 3, 4, \ldots\}$ be a function. If

$$\alpha(G) \le \min_{X} \left\{ \sum_{x \in X} (f(x) - 1) : X \subseteq V(G) \text{ and } |X| = n \right\} + 1,$$
(1)

then G has a spanning f-tree that has at most $\min_{X} \{\sum_{x \in X} (f(x) - 2) : X \subseteq V(G) \text{ and } |X| = n\} + 2 \text{ leaves.}$

We now give some other results and a conjecture related to our theorem, and explain the relation between our theorem and them. The following theorem gives a sufficient condition for a graph to have a spanning tree that contains specified vertices as leaves.

Theorem 5 (Matsuda and Matsumura [5]). Let n, k and s be integers such that $k \ge 2$, $0 \le s \le k$ and $s \le n - 1$, and let G be an n-connected graph. If $\alpha(G) \le (n - s)(k - 1) + 1$, then for any s vertices of G, G has a spanning k-tree that includes the s specified vertices as leaves.

Enomoto and Ozeki made the following conjecture on a spanning f-tree from the above theorem, and partially solved it (Theorem 7).

Conjecture 6 (Enomoto and Ozeki [3]). Let $n \ge 1$ be an integer, G be an n-connected graph and $f : V(G) \rightarrow \{1, 2, 3, ...\}$ be a function. If $\sum_{x \in V(G)} f(x) \ge 2(|G| - 1)$ and

$$\alpha(G) \le \min_{X} \left\{ \sum_{x \in X} (f(x) - 1) : X \subseteq V(G) \text{ and } |X| = n \right\} + 1$$

then G has a spanning f-tree.

Theorem 7 (Enomoto and Ozeki [3]). Let $n \ge 1$ be an integer, G be an n-connected graph and $f : V(G) \rightarrow \{1, 2, 3, ...\}$ be a function. If $\#\{v \in V(G) : f(v) = 1 \text{ or } 2\} \le n + 1$, $\sum_{x \in V(G)} f(x) \ge 2(|G| - 1)$ and

$$\alpha(G) \leq \min_{X} \left\{ \sum_{x \in X} (f(x) - 1) : X \subseteq V(G) \text{ and } |X| = n \right\} + 1,$$

then G has a spanning f-tree.

Note that Conjecture 6 is a generalization of Theorem 5 since by setting f(u) = 1 for *s* specified vertices *u* and f(v) = k for the other vertices *v*, Conjecture 6 implies Theorem 5. Moreover, another conjecture related to Conjecture 6 was proposed by Ozeki and Yamashita [7] using a new notation Cut(G, f) instead of the connectivity. Our Theorem 4 solves the conjecture under the assumption that $f(v) \ge 2$ for all vertices *v*, and the proof techniques in this paper are different from those in Enomoto and Ozeki [3].

Some other results on spanning trees related to our theorem are given in [1], and many current results on spanning trees can be found in [7].

2. Proof of Theorem 4

In order to prove Theorem 4, we need the following Lemmas.

Lemma 1 (Kouider [4]). Let *H* be a subgraph of an *n*-connected graph *G*, where $n \ge 2$. Then either *V*(*H*) is covered by a cycle of *G*, or there is a cycle *C* in *G* such that $\alpha(H - V(C)) \le \alpha(H) - n$. In particular, if $\alpha(H) \le n$, then *V*(*H*) is covered by a cycle of *G*.

By Lemma 1, we can easily obtained following lemma.

Download English Version:

https://daneshyari.com/en/article/4647132

Download Persian Version:

https://daneshyari.com/article/4647132

Daneshyari.com