Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Spanning trees with bounded degrees and leaves

Mikio K[a](#page-0-0)no^a, Zheng Yan ^{[b,](#page-0-1)[∗](#page-0-2)}

a *Ibaraki University, Hitachi, Ibaraki, Japan*

b *School of Information and Mathematics, Yangtze University, Jingzhou, PR China*

a r t i c l e i n f o

Article history: Received 11 December 2014 Received in revised form 15 December 2015 Accepted 23 December 2015 Available online 4 February 2016

Keywords: Spanning tree Degree sum Independence number Leaf

a b s t r a c t

Rivera-Campo provided a degree sum condition for a graph to have a spanning tree with bounded degrees and leaves. In this paper, we give an independence number condition for a graph to have a spanning tree with bounded degrees and leaves, which also partially solves the conjecture made by Enomoto and Ozeki (2010).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider simple graphs, which have neither loops nor multiple edges. For a graph *G*, let *V*(*G*) and *E*(*G*) denote the set of vertices and the set of edges of *G*, respectively. We write |*G*| for the *order* of *G* (i.e., $|G| = |V(G)|$). For a vertex v of *G*, we denote by $deg_G(v)$ the degree of v and by $N_G(v)$ the neighborhood of v. Thus $deg_G(v) = |N_G(v)|$. An edge joining two vertices *u* and v is denoted by *u*v or v*u*. The *independence number* and the *connectivity* of *G* are denoted by α(*G*) and κ(*G*), respectively. Let *T* be a tree. A vertex of *T* with degree one is often called a *leaf*, and the set of leaves of *T* is denoted by *Leaf*(*T*). For a set *X*, the cardinality of *X* is denoted by |*X*| or #*X*.

Chvátal and Erdös [\[2\]](#page--1-0) showed that if $\alpha(G) \leq \kappa(G) + 1$, then G has a hamiltonian path. This result was generalized to a spanning *k*-tree as follows, where a *k-tree* is a tree with maximum degree at most *k*.

Theorem 1 (Neumann-Lara and Rivera-Campo [\[6\]](#page--1-1)). Let $k \ge 2$ be an integer and G be a connected graph. If $\alpha(G) \le (k-1)$ $\kappa(G) + 1$, then G has a spanning k-tree.

On the other hand, a hamiltonian path is a spanning tree having exactly two leaves. From this point of view, Win provided a sufficient condition for a graph to have a spanning tree having a small number of leaves.

Theorem 2 (*Win* [\[9\]](#page--1-2)). Let $k \ge 2$ be an integer and G be a connected graph. If $\alpha(G) \le \kappa(G) + k - 1$, then G has a spanning tree *having at most k leaves.*

Recently, Rivera-Campo obtained a degree sum condition for a graph to have a spanning tree with bounded degree as well as with a small number of leaves.

Corresponding author. *E-mail addresses:* mikio.kano.math@vc.ibaraki.ac.jp (M. Kano), yanzhenghubei@163.com (Z. Yan). *URL:* <http://gorogoro.cis.ibaraki.ac.jp> (M. Kano).

<http://dx.doi.org/10.1016/j.disc.2015.12.023> 0012-365X/© 2016 Elsevier B.V. All rights reserved.

CrossMark

Theorem 3 (Rivera-Campo [\[8\]](#page--1-3)). Let p, n and $d_1, d_2, ..., d_p$ be integers such that $1 \le n \le p - 1$ and $2 \le d_1 \le d_2 \le ... \le d_p$ $d_p \leq p-1$ *. Let G be an n-connected graph of order p with vertex set* $V(G) = \{v_1, v_2, \ldots, v_p\}$ *<i>. If*

$$
deg_G(x) + deg_G(y) \ge p - 1 - \sum_{j=1}^n (d_j - 2)
$$

for any non-adjacent vertices x and y of G, then G has a spanning tree T that has at most $\sum_{j=1}^n(d_j-2)+2$ leaves and satisfies $deg_T(v_i) \leq d_i$ for all $i = 1, 2, ..., p$.

For a function $f: V(G) \to \{1, 2, 3, \ldots\}$, a spanning tree T of a graph G is called a spanning f -tree if $\deg_T(v) \le f(v)$ for all vertices v of *G*. Here, we give a sufficient condition using independence number for a graph to have a spanning *f* -tree with a small number of leaves. The following is our result.

Theorem 4. Let $n \geq 1$ be an integer. Let G be an n-connected graph and $f : V(G) \rightarrow \{2, 3, 4, \ldots\}$ be a function. If

$$
\alpha(G) \le \min_{X} \left\{ \sum_{x \in X} (f(x) - 1) : X \subseteq V(G) \text{ and } |X| = n \right\} + 1,
$$
 (1)

then G has a spanning f -tree that has at most $\min_X \{ \sum_{x \in X} (f(x) - 2) : X \subseteq V(G) \text{ and } |X| = n \} + 2$ *<i>leaves.*

We now give some other results and a conjecture related to our theorem, and explain the relation between our theorem and them. The following theorem gives a sufficient condition for a graph to have a spanning tree that contains specified vertices as leaves.

Theorem 5 (*Matsuda and Matsumura* [\[5\]](#page--1-4)). Let n, *k* and *s* be integers such that $k \geq 2$, $0 \leq s \leq k$ and $s \leq n - 1$, and let G be *an n-connected graph. If* $\alpha(G) \leq (n - s)(k - 1) + 1$, then for any s vertices of G, G has a spanning k-tree that includes the s *specified vertices as leaves.*

Enomoto and Ozeki made the following conjecture on a spanning *f* -tree from the above theorem, and partially solved it [\(Theorem 7\)](#page-1-0).

Conjecture 6 (*Enomoto and Ozeki* [\[3\]](#page--1-5)). Let $n \ge 1$ be an integer, G be an n-connected graph and $f : V(G) \rightarrow \{1, 2, 3, \ldots\}$ be a *function. If* $\sum_{x \in V(G)} f(x) \ge 2(|G| - 1)$ *and*

$$
\alpha(G) \le \min_X \left\{ \sum_{x \in X} (f(x) - 1) : X \subseteq V(G) \text{ and } |X| = n \right\} + 1,
$$

then G has a spanning f -tree.

Theorem 7 (*Enomoto and Ozeki [\[3\]](#page--1-5)*). Let $n \geq 1$ *be an integer, G be an n-connected graph and* $f : V(G) \rightarrow \{1, 2, 3, ...\}$ *be a function. If* $# \{ v \in V(G) : f(v) = 1 \text{ or } 2 \} ≤ n + 1$, $\sum_{x \in V(G)} f(x) ≥ 2(|G| - 1)$ and

$$
\alpha(G) \le \min_X \left\{ \sum_{x \in X} (f(x) - 1) : X \subseteq V(G) \text{ and } |X| = n \right\} + 1,
$$

then G has a spanning f -tree.

Note that [Conjecture 6](#page-1-1) is a generalization of [Theorem 5](#page-1-2) since by setting $f(u) = 1$ for *s* specified vertices *u* and $f(v) = k$ for the other vertices v, [Conjecture 6](#page-1-1) implies [Theorem 5.](#page-1-2) Moreover, another conjecture related to [Conjecture 6](#page-1-1) was proposed by Ozeki and Yamashita [\[7\]](#page--1-6) using a new notation *Cut*(*G*, *f*) instead of the connectivity. Our [Theorem 4](#page-1-3) solves the conjecture under the assumption that $f(v) \geq 2$ for all vertices v, and the proof techniques in this paper are different from those in Enomoto and Ozeki [\[3\]](#page--1-5).

Some other results on spanning trees related to our theorem are given in [\[1\]](#page--1-7), and many current results on spanning trees can be found in [\[7\]](#page--1-6).

2. Proof of [Theorem 4](#page-1-3)

In order to prove [Theorem 4,](#page-1-3) we need the following Lemmas.

Lemma 1 (*Kouider [\[4\]](#page--1-8)*). Let H be a subgraph of an n-connected graph G, where $n > 2$. Then either V(*H*) is covered by a cycle of *G, or there is a cycle C in G such that* $\alpha(H - V(C)) \leq \alpha(H) - n$. In particular, if $\alpha(H) \leq n$, then $V(H)$ is covered by a cycle of G.

By [Lemma 1,](#page-1-4) we can easily obtained following lemma.

Download English Version:

<https://daneshyari.com/en/article/4647132>

Download Persian Version:

<https://daneshyari.com/article/4647132>

[Daneshyari.com](https://daneshyari.com)