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a b s t r a c t

This paper makes progress towards settling the long-standing conjecture that the total
chromatic number χ ′′ of the complete p-partite graph K = K(r1, . . . , rp) is ∆(K) + 1 if
and only if K ≠ Kr,r and if K has an even number of vertices thenΣv∈V (K)(∆(K)−dK (v)) is
at least the number of parts of odd size. Graphs of even order that are fairly close to being
regular are the ones for which χ ′′(K) remains in doubt. In this paper we show that K is
of Type 1 if |V (K)| is even and r2 < r3 (with parts arranged in non-decreasing order of
size), thereby improving on the result of Dong and Yap published in 2000. Furthermore, it
is shown using this result together with the novel approach of graph amalgamations that
all complete multipartite graphs of the form K(r, r, . . . , r, r + 1) are of Type 1.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and definitions

A graph G = (V , E) is said to have a total coloring if the elements of V (G) ∪ E(G) are colored so that: adjacent vertices
receive different colors; incident edges receive different colors; and if edge e is incident with vertex v then e and v receive
different colors. The total chromatic number χ ′′(G) is the least number of colors needed to totally color G. The complete
p-partite graph K = K [V1, . . . , Vp] is the simple graph with vertex set V (K) = ∪

p
i=1 Vi (each set Vi is called a part) in which

two vertices are joined if and only if they occur in different parts of K . If the names of the vertex sets are unimportant then
K is simply referred to as K(r1, . . . , rp), where |Vi| = ri for 1 ≤ i ≤ p.

The graph K is of sufficient complexity that settling the values of its graph parameters is often a challenge. Finding the
chromatic index χ ′(K) is a typical example. Of course the classic result of Vizing shows that χ ′(G) is ∆(G) or ∆(G) + 1,
thereby giving rise to the classification of whether a graph is Class 1 or Class 2 respectively. It was finally shown in 1992 that
K is a Class 2 graph if and only if it is overfull [10]. Similar to Vizing’s result, it is conjectured that the value of χ ′′(G) for any
simple graph G is either∆(G)+ 1 or∆(G)+ 2 (see [1,14]), and G is said to be of Type 1 or Type 2 respectively based on this
value. Bermond settled the type of K when it is regular [2]. Yap [17] proved that χ ′′(K) ≤ ∆+ 2, and with Chew [6] showed
that if K has an odd number of vertices or if p = 3 then it is Type 1. Along the lines of the result proved in this paper, in 1992
Chew and Yap [6] also showed the following result.

Theorem 1.1. If either r1 < r2 ≤ r3 ≤ · · · ≤ rp or p = 3, then K(r1, . . . , rp) is of Type 1.

It was not until 2000 that Dong and Yap [8] improved this result, showing the following.
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Theorem 1.2 ([8]). Suppose that r1 ≤ r2 ≤ · · · ≤ rp and that |V (K)| = 2n. If r2 ≤ r3 − 2 then K is of Type 1. Also if K is not
regular with p = 4 then it is of Type 1.

Theproof techniques in all these papers are very similar, though getmore complicated asmore difficult cases are attacked.
They build upon the idea of coloring the vertices so that all vertices in one part, say Vβ , receive the same color, while all
other vertices receive different colors (a so-called β-biased total coloring). Such total colorings were characterized in [11]
by Hoffman and Rodger, thereby producing the following theorem. It is most easily stated in terms of the deficiency, which
is the measure of how far a graph G is from being regular, and is defined by:

def (G) = Σv∈V (G)(∆(G)− dG(v)).

Theorem 1.3. Suppose that r1 ≤ r2 ≤ · · · ≤ rp and that |V (K)| = 2n. If

def (K) ≥

2n − p1 if p = 2 or
if p is even, r1 is odd, and r1 = rp−1,

2n − pr otherwise,

then K is Type 1.

Knowing more about edge-coloring results certainly helps with attacking total chromatic number problems. Indeed, the
proof of Theorem 1.3made use of the following result, also by Hoffman and Rodger [9]. The subgraph induced by the vertices
of maximum degree in a graph G is known as its core, G∆.

Theorem 1.4 ([9]). If G is a simple graph in which G∆ is a forest then G is a Class 1 graph.

Along the lines of Theorem 1.4, Xie and Yang [15] proved the following theorem for graphs with even order and high
degree.

Theorem 1.5 ([15]). Let G ≠ K2 be a graph of even order and G∆ be a forest. If δ(G)+∆(G) ≥
3
2 |V (G)|−

3
2 , thenχ

′′(G) = ∆+1.

Recently, Dalal and Rodger [7] introduced a novel approach using amalgamations to attack the problem of finding the
total chromatic number of the complete multipartite graph. They exemplified the power of the approach by settling the
classification problem for all complete 5-partite graphs, thereby extending the result for p = 4 in Theorem 1.2. More
precisely, they proved:

Theorem 1.6 ([7]). The graph K = K(r1, . . . , r5) is Type 2 if and only if |V (K)| ≡ 0 (mod 2) and def (K) is less than the number
of parts in K of odd size.

The idea of the technique is to reverse the process of taking a graphhomomorphism. Suppose thatwehave a total coloring
of K in which all vertices in Vi receive the same color; thenwe apply a homomorphism thatmaps each vertex in Vi to a single
new vertex vi. This totally colored multigraph K ′, the so-called natural amalgamation of K , is much easier to total color than
it is to color K . The following result shows that if we can just total color the homomorphic image, then it is possible to
disentangle the vertices to produce K .

Theorem 1.7 ([12]). Let 1 ≤ r1 ≤ r2 ≤ · · · ≤ rp and let G be the multigraph on the p vertices v1, . . . , vp in which vi is joined
to vj with rirj edges. Suppose there exists a k-edge-coloring of G in which each vertex vi is incident with xi,j ≤ ri edges of color
j. Then there exists a proper k-edge-coloring of K(r1, . . . , rp) in which for 1 ≤ i ≤ p the number of vertices in Vi incident with
edges colored j is exactly xi,j.

Note that in this result, each color class in K(r1, . . . , rp) is a matching. Bryant et al. [4] gave the following necessary and
sufficient condition for decomposition of complete multigraphs into cycles of varying lengths, which will also be of use in
our proofs. For any graph G, let r ∗ G denote the multigraph formed by replacing each edge in Gwith r edges.

Theorem 1.8 ([4]). Let λ, n and m be integers with n, m ≥ 3 and λ ≥ 1. There exists a decomposition of λ ∗ Kn into m-cycles if
and only if

(1) m ≤ n;
(2) λ(n − 1) is even; and
(3) m divides λ

n
2


.

There exists a decomposition of λ ∗ Kn into m-cycles and a perfect matching if and only if

(1) m ≤ n;
(2) λ(n − 1) is odd; and
(3) m divides λ

n
2


−

n
2 .
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