Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Element deletion changes in dynamic coloring of graphs

ABSTRACT

respectively.

Lian-Ying Miao^a, Hong-Jian Lai^{b,*}, Yan-Fang Guo^a, Zhengke Miao^c

^a Institute of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

^b Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

^c School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China

ARTICLE INFO

Article history: Received 9 July 2015 Received in revised form 12 January 2016 Accepted 12 January 2016 Available online 4 February 2016

Keywords: Dynamic coloring Dynamic chromatic number

1. Introduction

In this paper, all graphs G = (V, E) are finite, simple and undirected. For $v \in V$, $N_G(v)$ is the set of vertices adjacent to v, and the degree of v, denoted by $d_G(v)$, is $|N_G(v)|$. We use $\Delta(G)$ and $\delta(G)$ to denote the maximum degree and minimum degree of G, respectively. When the graph G is understood from the context, we often omit the subscript G, and use δ , Δ for $\delta(G), \Delta(G)$, respectively. If $uv \in E$, then u is a **neighbor** of v. For $W \subseteq V, G - W$ denotes the graph obtained from G by deleting the vertices in W together with their incident edges. If $W = \{w\}$, we often write G - w for $G - \{w\}$. If $U \subseteq V$, then G[U] denotes the graph on U whose edges are precisely the edges of G with both ends in U. Let C_n and P_n denote a cycle and a path on *n* vertices, respectively. In a graph G, an **elementary subdivision** of an edge $e = uv \in E(G)$ is the operation of replacing e with a path $uv_e v$ through a new vertex v_e . A graph H is a **subdivision** of a graph G if H can be obtained from G by a sequence of elementary subdivisions. For a real number x, we use $\lceil x \rceil$ to denote the least integer no less than x.

For an integer k > 0, let $\overline{k} = \{1, 2, \dots, k\}$. If $S \subseteq V(G)$ is a subset and $c : V(G) \mapsto \overline{k}$ is a mapping, then define $c(S) = \{c(x) : x \in S\}$. A **dynamic** *k*-coloring of a graph *G* is a mapping $c : V(G) \mapsto \overline{k}$ satisfying both of the following:

(C1) If $uv \in E(G)$, then $\varphi(u) \neq \varphi(v)$, and

(C2) for each vertex $v \in V(G)$, $|c(N(v))| \ge \min\{2, d_G(v)\}$.

The **dynamic chromatic number** $\chi_d(G)$ is the smallest integer k such that G has a dynamic k-coloring. Dynamic coloring was first introduced in [12,9], and is a special case of the r-hued colorings [8,7,13] when r = 2. The study of dynamic coloring has drawn lots of attention, as seen in [1-6,8,9,12,10,11,13,14], among others.

Unlike classic colorings, a subgraph of a graph G may have a bigger dynamic chromatic number than G. A natural problem is to investigate the differences between $\chi_d(G)$ and $\chi_d(G-e)$, and between $\chi_d(G)$ and $\chi_d(G-v)$. This motivates the current study. In Section 2, we will investigate the best possible bounds for the differences between $\chi_d(G-e)$ and $\chi_d(G)$, and between $\chi_d(G - v)$ and $\chi_d(G)$.

http://dx.doi.org/10.1016/j.disc.2016.01.009 0012-365X/© 2016 Elsevier B.V. All rights reserved.

© 2016 Elsevier B.V. All rights reserved.

A proper vertex k-coloring of a graph G is dynamic if for every vertex v with degree at

least 2, the neighbors of v receive at least two different colors. The smallest integer k such

that G has a dynamic k-coloring is the dynamic chromatic number $\chi_d(G)$. In this paper the

differences between $\chi_d(G)$ and $\chi_d(G-e)$, and between $\chi_d(G)$ and $\chi_d(G-v)$ are investigated

Corresponding author.

E-mail addresses: miaolianying@cumt.edu.cn (L-Y. Miao), hongjianlai@gmail.com (H.-J. Lai), 243834696@qq.com (Y.-F. Guo), zkmiao@jsnu.edu.cn (Z. Miao).

2. Comparisons between $\chi_d(G)$ and $\chi_d(G - e)$, and between $\chi_d(G)$ and $\chi_d(G - v)$

It is well known that if *H* is a subgraph of a graph *G*, then $\chi(G) \ge \chi(H)$. However, there exist graphs *G* with a subgraph *H* such that $\chi_d(H) > \chi_d(G)$. For example, let *G* be the 5-cycle with one chord, and let *H* be the 5-cycle, then it is routine to verify that $\chi_d(G) = 4$ but $\chi_d(H) = 5$.

In this section, we investigate tight bounds for the change of the dynamic chromatic number when an edge or a vertex is being removed. We start with a lemma, which follows from definition immediately.

Lemma 2.1. If G is a connected graph on at least 2 vertices, then $\chi_d(G) \leq 2$ is and only if $G \in \{K_1, K_2\}$.

Theorem 2.1. Each of the following holds.

(i) Let G be a connected graph with $|V(G)| \ge 3$. Then for any edge $e = uv \in E(G)$,

$$\chi_d(G) - 2 \le \chi_d(G - e) \le \chi_d(G) + 2.$$

(ii) There exists a graph G such that $\chi_d(G - e) = \chi_d(G) + 2$ for at least one edge $e \in E(G)$.

(iii) If a connected graph G satisfies that $\chi_d(G-e) = \chi_d(G) - 2$ for at least one edge e in G, then $G = C_5$.

Proof. (i) Let $k_1 = \chi_d(G - e)$, and let $c_1 : V(G - e) \mapsto \overline{k}_1$ be a dynamic k_1 -coloring of G - e. Obtain a new coloring c'_1 from c_1 by defining

$$c'_{1}(z) = \begin{cases} c_{1}(z) & \text{if } z \notin \{u, v\} \\ k_{1} + 1 & \text{if } z = u \\ k_{1} + 2 & \text{if } z = v. \end{cases}$$

By definition, $c'_1 : V(G) \mapsto \overline{k_1 + 2}$ is a dynamic $(k_1 + 2)$ -coloring of *G*, and so $\chi_d(G) \le \chi_d(G - e) + 2$.

Now let $k_2 = \chi_d(G)$ and $c_2 : V(G) \mapsto \overline{k_2}$ be a dynamic k_2 -coloring of G. Since $|V(G)| \ge 3$ and since G is connected, there exists $x \in N_G(u) - \{v\}$ or $y \in N_G(v) - \{u\}$. Choose such x and y so that $|\{x, y\}|$ is maximized. If $|\{x, y\}| = 1$, then by the maximality of $|\{x, y\}|$, and since G is connected, we must have $d_G(u) \le 2$ and $d_G(v) \le 2$. In this case, we have $\chi_d(G) = \chi_d(G-e)$, and so $\chi_d(G) \le \chi_d(G-e) + 2$. Hence we assume that $x \ne y$. Obtain a new coloring c'_2 from c_2 by defining

$$c'_{2}(z) = \begin{cases} c_{2}(z) & \text{if } z \notin \{x, y\} \\ k_{2} + 1 & \text{if } z = x \\ k_{2} + 2 & \text{if } z = y. \end{cases}$$

By definition, $c'_2 : V(G - e) \mapsto \overline{k_2 + 2}$ is a dynamic $(k_2 + 2)$ -coloring of G - e, and so $\chi_d(G - e) \leq \chi_d(G) + 2$. This proves (i). (ii) For an integer $r \geq 4$, let H be a complete r-partite graph with partite sets V_1, V_2, \ldots, V_r , such that $|V_i| \geq 2$ for each i with $1 \leq i \leq r$, and let u and v be two new vertices. Let G be the graph obtained from H by adding a new edge uv to H and by joining u to every vertex in V_1 and joining v to every vertex in V_2 . It is routine to verify that $\chi_d(G) = \chi(G) = r$, and that $\chi_d(G - uv) = r + 2$, since the vertices in each of V_1 and V_2 must be colored with at least two colors.

(iii) Let *G* be a connected graph with at least one edge such that $\chi_d(G - e) = \chi_d(G) - 2$ for some edge $e = uv \in E(G)$, and let $k = \chi_d(G - e)$. If $\chi_d(G - e) \le 2$, then by Lemma 2.1, $G \in \{K_2, P_3\}$, contrary to the assumption that $\chi_d(G - e) = \chi_d(G) - 2$ for some $e \in E(G)$. Hence we assume that $k = \chi_d(G - e) \ge 3$.

Let $c : V(G - e) \mapsto \overline{k}$ be a dynamic *k*-coloring. Assume without loss of generality, that $d_G(u) \ge d_G(v)$. If $d_G(v) = 1$, then v is an isolated vertex of G - e. As $k \ge 3$, we can pick a vertex $u' \in N_G(u) - \{v\}$ and redefine $c(v) \in \overline{k} - \{c(u), c(u')\}$ to obtain a *k*-coloring of G, contrary to the assumption that $\chi_d(G - e) = \chi_d(G) - 2$. If $d_G(u) \ge 3$, then by $k \ge 3$, we can redefine c(u) = k + 1 to obtain a (k + 1)-coloring of G, contrary to the assumption that $\chi_d(G - e) = \chi_d(G) - 2$. If $d_G(u) \ge 3$, then by $k \ge 3$, we can may assume that $d_G(u) = d_G(v) = 2$. Let $N_G(u) = \{v, u'\}$, $N_G(v) = \{u, v'\}$. We have the following claims.

Claim 1. $u' \neq v'$.

If u' = v', then obtain a new coloring c' from c by defining

$$c'(z) = \begin{cases} c(z) & \text{if } z \neq u \\ k+1 & \text{if } z = u \end{cases}$$

By definition, $c' : V(G) \mapsto \overline{k+1}$ is a dynamic (k+1)-coloring of *G*, contrary to the assumption that $\chi_d(G-e) = \chi_d(G) - 2$. Thus Claim 1 must hold.

Claim 2.
$$c(u) = c(v') \neq c(u') = c(v)$$

If $c(u) \neq c(v')$, then obtain a new coloring c'' from c by defining

$$c''(z) = \begin{cases} c(z) & \text{if } z \neq v \\ k+1 & \text{if } z = v. \end{cases}$$

(1)

Download English Version:

https://daneshyari.com/en/article/4647135

Download Persian Version:

https://daneshyari.com/article/4647135

Daneshyari.com