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a b s t r a c t

Given an undirected graph G with node set V and edge set E, the cut polytope CUT (G) is
defined as the convex hull of the incidence vectors of the cuts in G. For a given integer
k ∈ {1, 2, . . . , ⌊ |V |

2 ⌋}, the uniform cut polytope CUT=k(G) is defined as the convex hull of
the incidence vectors of the cuts which correspond to a bipartition of the node set into sets
with cardinalities k and |V | − k.

In this paper, we study the diameter of these two families of polytopes. For a connected
graph G, we prove that the diameter of CUT (G) is at most |V | − 1, improving on the
bound of |E| given by F. Barahona and A.R. Mahjoub. We also give its exact value for trees
and complete bipartite graphs. Then, with respect to uniform cut polytopes, we introduce
sufficient conditions for adjacency of two vertices in CUT=k(G), we study some particular
cases and provide some connections with other partition polytopes from the literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Diameter of polytopes

Given a nonempty polytope P , the 1-skeleton of P is the graph whose nodes correspond to the vertices of P , and having
an edge joining two nodes iff (if and only if) the corresponding vertices of P are adjacent on P . Given two vertices v1, v2 of P ,
let d(v1, v2) denote the length (w.r.t. the number of edges) of a shortest path between the nodes representing v1 and v2 in
the 1-skeleton of P . The diameter of P , which is denoted by diameter(P) is the maximum distance between any two vertices
of P , i.e. max{d(v1, v2) : v1, v2 are vertices of P}.

The notion of diameter of a polyhedron presents, among others, some connections with linear programming and linear
optimizationmethods that are based on the fact that if a linear program having for feasible region a pointed polyhedron has
a finite optimal objective value, then there exists an optimal vertex solution. For example, consider the simplex algorithm
applied to such a linear program: starting from a particular vertex v0 of the feasible region F , this method consists in
iteratively moving from a vertex (the current basic feasible solution) of F to an adjacent vertex (with better or equal objective
value), until an optimal vertex solution is found.

Given a nonempty polytope P , any vertex v of P is the unique minimizer of some linear function over P . For such an
objective function, if the simplex method is applied starting from a vertex v0 satisfying d(v, v0) = diameter(P), then the
number of iterations required is at least diameter(P).

For further information on polytopes and related notions, the reader may consult, e.g., the textbooks by Grünbaum [8]
and Ziegler [16]. We now introduce some useful notation and preliminaries.

E-mail address: Jose.Neto@telecom-sudparis.eu.

http://dx.doi.org/10.1016/j.disc.2016.01.002
0012-365X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2016.01.002
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2016.01.002&domain=pdf
mailto:Jose.Neto@telecom-sudparis.eu
http://dx.doi.org/10.1016/j.disc.2016.01.002


1606 J. Neto / Discrete Mathematics 339 (2016) 1605–1612

Notation and preliminaries

Let G = (V , E) denote an undirected graph with node set V and edge set E. Given a node set S ⊆ V , let δG(S) (or δ(S)
when G is clear from the context) stand for the cut that is defined by S, i.e., the set of edges in E with exactly one endpoint
in S: δ(S) = {e ∈ E: |e ∩ S| = 1}. The node sets S and V \ S are called the shores of the cut δ(S). If 0 < |S| < |V |, the cut
δ(S) is said to be proper. The set of edges in the graph G = (V , E) with both endpoints in S ⊆ V is denoted by EG(S). If there
exists an edge joining the nodes u and v, i.e. {u, v} ∈ E, then the nodes u and v are said to be adjacent.

Given a set F of edges in G, its incidence vector χ F
∈ R|E| is defined by χ F

e = 1 if e ∈ F and 0 otherwise. Given a node
v ∈ V , N(v) denotes the set of nodes in V \ {v} that are adjacent to v in G. Given S ⊆ V , G[S] denotes the subgraph of G
that is induced by the node set S. Given a graph G, the notations V (G) and E(G) indicate the node set and the edge set of G,
respectively.

A set P of vectors in Rn is called a polyhedron if P = {x ∈ Rn: Ax ≤ b}, for some matrix A ∈ Rm×n and vector b ∈ Rm.
A bounded polyhedron is also called a polytope. The dimension of a polyhedron P , denoted by dim(P), is the maximum
number of affinely independent points in P minus 1. Given a polyhedron P ⊂ Rn, a set F is a face of P iff F ≠ ∅ and
F = {x ∈ P: Ax = b}, for some subsystem Ax ≤ b of Ax ≤ b. A face of P having dimension 0 (resp. 1, dim(P) − 1) is also
called a vertex (resp. an edge, a facet) of P . Two vertices of a polyhedron P are called adjacent or neighbouring if they are both
contained in an edge of P .

Given two sets A and B, the notation A∆B represents their symmetric difference, i.e. A∆B = (A ∪ B) \ (A ∩ B). For any
node subsets T ,U ⊆ V , δ(T )∆δ(U) = δ(T∆U), hence the collection of cuts is closed under taking symmetric differences
(see for example [15]). A cut I is said to beminimal if there does not exist any cut J ( I .

On the cut and uniform cut polytopes

The cut polytope CUT (G) is defined as the convex hull of the incidence vectors of all the cuts in the graph G, i.e. CUT (G) =

conv{χ δG(S): S ⊆ V }. Given some integer k satisfying k ≤ ⌊
|V |

2 ⌋, CUT=k(G) = conv{χ δG(S): S ⊆ V and |S| = k} denotes
the convex hull of the incidence vectors of the cuts in G having one shore with size k. Polytopes of the latter form are called
uniform cut polytopes. In the particular case when the graph G is complete with order n, i.e., G = Kn, we shall simply write:
CUT n

=k.
Investigations on the polyhedral structure of these and related polytopes are reported, e.g., in [2,6,13,14] and the

references therein. Optimization over the cut polytope arises, e.g., in statistical physics [1,5] or circuit design [7] (for further
information on properties and applications of these families of polytopes the reader may consult, e.g., [6]). Our objective is
to develop new insights and improve our knowledge of the polyhedral structure of these and related polytopes.

To the author’s knowledge, the first study of the 1-skeleton of the cut polytope appears in the paper by Barahona and
Mahjoub [2], where the following characterization of vertex adjacency on the cut polytope is provided (Theorem 4.1 in [2]).

Theorem 1.1 ([2]). Let G = (V , E) be a connected graph, and let I, J denote two cuts in G. Set F = E \ (I∆J). Then χ I and χ J

are adjacent on CUT (G) iff the graph HI∆J = (V , F) has two connected components. �

The proof the authors give relies on the property that the extreme points χ I and χ J are adjacent on CUT (G) iff there exists a
vector c such that they are the only two vertices optimizing max{cT x : x ∈ CUT (G)}. The following remark directly follows
from Theorem 1.1.

Remark 1. The vectorsχ I andχ J are adjacent on CUT (G) iff I∆J is aminimal cut. Indeed, assuming that I∆J is not aminimal
cut, let Ldenote aminimal cut such that∅ ≠ L ( I∆J . Thenχ I∆L

+χ J∆L
= χ I

+χ J , implying thatχ I andχ J cannot be adjacent.
Conversely, if we now assume that I∆J is a minimal cut, then there cannot be more than two connected components in HI∆J
because otherwise any node set corresponding to a connected component in HI∆J would define a nonempty cut strictly
contained in I∆J .

In the same reference [2], it is also established that the Hirsch property holds for CUT (G). (A d-dimensional polytope
P with f facets is said to satisfy the Hirsch property if its diameter verifies the inequality: diameter(P) ≤ f − d.) In fact,
Naddef [11] proved later that this property holds for all (0, 1)-polytopes, and thus also for CUT (G) and the uniform cut
polytopes. What also follows from Theorem 1.1 and its proof is that CUT (G) is a so-called combinatorial polyhedron [10,12], a
family of polyhedra forwhichMatsui and Tamura established further different properties related to theHirsch property [10].

The present paper is organized as follows. In Section 2, we study the diameter of the cut polytope, give its exact value
for some graph classes and provide upper bounds for other cases. In Section 3 we report investigations on the diameter of
uniform cut polytopes: afterwe provide (Section 3.1) sufficient conditions for two vertices to be adjacent on these polytopes,
we deal with some particular cases, drawing some connections with other polytopes from the literature (Section 3.2).
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