Spanning trees and spanning Eulerian subgraphs with small degrees

Morteza Hasanvand
Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11155-9415, Tehran, Iran

ARTICLE INFO

Article history:

Received 31 May 2014
Received in revised form 5 January 2015
Accepted 25 February 2015
Available online 20 March 2015

Keywords:

Spanning tree
Spanning Eulerian
Connectivity
Regular graph

Abstract

Liu and Xu (1998) and Ellingham, Nam and Voss (2002) independently showed that every k-edge-connected simple graph G has a spanning tree T such that for each vertex v, $d_{T}(v) \leq\left\lceil\frac{d(v)}{k}\right\rceil+2$. In this paper we show that every k-edge-connected graph G has a spanning tree T such that for each vertex $v, d_{T}(v) \leq\left\lceil\frac{d(v)-2}{k}\right\rceil+2$; also if G has k edge-disjoint spanning trees, then T can be found such that for each vertex $v, d_{T}(v) \leq\left\lceil\frac{d(v)-1}{k}\right\rceil+1$. This result implies that every ($r-1$)-edge-connected r-regular graph (with $r \geq 4$) has a spanning Eulerian subgraph whose degrees lie in the set $\{2,4,6\}$; also reduces the edgeconnectivity needed for some theorems due to Barát and Gerbner (2014) and Thomassen (2008, 2013). Moreover these bounds for finding spanning trees are sharp.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this article, all graphs have no loop, but multiple edges are allowed and a simple graph is a graph without multiple edges. All integer variables are positive, unless otherwise stated. Let G be a graph. The vertex set, the edge set and the maximum degrees of vertices of G are denoted by $V(G), E(G)$ and $\Delta(G)$, respectively. Let f be a positive integer-valued function on $V(G)$, a spanning tree T of G is called spanning f-tree, if for each vertex $v, d_{T}(v) \leq f(v)$. For a set A of integers, an A-factor is a spanning subgraph with vertex degrees in A. Let K be a subgraph of G and $S \subseteq V(G)$, the set of edges of K whose ends are in the set S, denoted by $E_{S}(K)$.

In 1997, Czumaj and Strothmann used the algorithm in [9] (when the input graph is k-connected) to deduce the following theorem.

Theorem 1 ([6]). Every k-connected graph G has a spanning tree T such that $\Delta(T) \leq\left\lceil\frac{\Delta(G)-2}{k}\right\rceil+2$.
Liu and Xu (1998) investigated spanning trees with small degrees in highly edge-connected simple graphs. They concluded that every r-edge-connected r-regular simple graph has a connected $\{1,2,3\}$-factor and remarked that these graphs may have no connected $\{1,2\}$-factors (Hamiltonian path). These results were rediscovered independently by Ellingham, Nam and Voss (2002).

Theorem 2 ([7,11]). Every k-edge-connected simple graph G has a spanning tree T such that for each vertex $v, d_{T}(v) \leq\left\lceil\frac{d(v)}{k}\right\rceil+2$.
In the special case $k=2$, the upper bound can be reduced. Many authors found the following fact with different proofs. In addition, Theorem 3 was discovered in [6], but for 2-connected graphs.

[^0]Theorem 3 ([1,11,14]). Every 2-edge-connected graph G has a spanning tree T such that for each vertex $v, d_{T}(v) \leq\left\lceil\frac{d(v)}{2}\right\rceil+1$.
Let G be a k-edge-connected graph. By the same fundamental process in [11], we show that in Section 2, the graph G has a spanning tree T such that for each vertex $v, d_{T}(v) \leq\left\lceil\frac{d(v)-2}{k}\right\rceil+2$. This improves the results of Theorems 1 and 2 and also implies Theorem 3. Accordingly, this shows that every ($r-2$)-edge-connected r-regular graph (with $r \geq 3$) has a connected $\{1,2,3\}$-factor.

The authors of [2,14,15] confirmed the conjecture of Barát-Thomassen [3] for some trees, using the fact that every graph G with k edge-disjoint spanning trees has a spanning tree with small degrees. In Section 3 , we prove that G has a spanning tree T such that for each vertex $v, d_{T}(v) \leq\left\lceil\frac{d(v)-1}{k}\right\rceil+1$. This improved bound reduces the edge-connectivity needed for some theorems of above mentioned papers, for example, reduces the edge-connectivity of the following theorem to 75 with exactly the same proof. Note that Martin Merker (pers. comm.) can also decrease the necessary edge-connectivity less than 60.

Theorem 4 ([14]). Every 171-edge-connected simple graph has an edge-decomposition into paths of length 3 if and only its size is divisible by 3.

Jaeger [10] and Catlin [5] independently showed that every 4-edge-connected graph has a spanning Eulerian subgraph. In Section 4, we show that every ($r-1$)-edge-connected r-regular graph (with $r \geq 4$) has a spanning Eulerian subgraph whose degrees lie in the set $\{2,4,6\}$. Note that for a 4 -connected $K_{1,3}$-free graph, this set can be replaced by $\{2,4\}$, which is proved in [4].

2. Spanning trees in graphs with high edge-connectivity

Liu and Xu [11] used the idea of Lemma 1 and 2 in [17] and generalized them to prove Theorem 2. Also Ellingham and Zha [8] found a shorter and more systematic proof for them. We state the following important lemma, which generalizes Lemma 1 in [11].

Lemma 1. Let G be a connected graph with a positive integer-valued function f on $V(G)$. If G has no spanning f-tree, then there exists a proper induced subgraph H of G, a spanning f-tree T of H and a non-empty subset S of $V(T)$, with the following properties:

1. For each vertex v of $S, d_{T}(v)=f(v)$.
2. There is no edge of H joining components of $T \backslash S$.
3. The set S contains all vertices of H which are adjacent to a vertex in $V(G) \backslash V(H)$.

Proof. Let H be a proper induced subgraph of G with a spanning f-tree T. Consider H with maximum $|V(H)|$. For any $S \subseteq$ $V(H)$ and $v \in V(H) \backslash S$, let $\mathcal{A}(S, v)$ be the set of all spanning f-trees T^{\prime} of H such that T and T^{\prime} have the same edges, except for some edges whose ends are in C, where C is the component of $T \backslash S$ containing v. Let $V_{0}=\emptyset$ and for each positive integer i, recursively define V_{i} as follows:

$$
V_{i}=\left\{v \in V(H): d_{T^{\prime}}(v)=f(v), \text { for all } T^{\prime} \in \mathcal{A}\left(V_{0} \cup \cdots \cup V_{i-1}, v\right)\right\}
$$

Now we prove the following claim.
Claim. Let u and v be two vertices in different components of $T \backslash\left(V_{0} \cup \cdots \cup V_{n-1}\right)$. If $u v \in E(H)$, then $u \in V_{n}$ or $v \in V_{n}$.
Proof of Claim. By induction on n. For $n=1$, the proof is clear. Assume that the claim is true for $n-1$. Now we prove it for n. Suppose to the contrary that vertices u and v are in different components of $T \backslash\left(V_{0} \cup \cdots \cup V_{n-1}\right), u v \in E(H)$ and $u, v \notin V_{n}$. Then there exist $T_{1} \in \mathcal{A}\left(V_{0} \cup \cdots \cup V_{n-1}, v\right)$ and $T_{2} \in \mathcal{A}\left(V_{0} \cup \cdots \cup V_{n-1}, u\right)$ with $d_{T_{1}}(v) \neq f(v)$ and $d_{T_{2}}(u) \neq f(u)$. Note that T_{1} and T_{2} are spanning f-trees of H. Let P be the unique path connecting u and v in T. By the induction hypothesis, u and v are in the same component of $T \backslash\left(V_{0} \cup \cdots \cup V_{n-2}\right)$. Hence $V(P) \cap\left(V_{0} \cup \cdots \cup V_{n-2}\right)=\emptyset$. This implies that $V(P) \cap V_{n-1} \neq \emptyset$. Pick $w \in V(P) \cap V_{n-1}$. Let e be an edge of P adjacent to w. Now let \mathcal{T} be a spanning tree of H with

$$
E(\mathcal{T})=D\left(v, T_{1}\right) \cup D\left(u, T_{2}\right) \cup\{u v\} \cup(E(T) \backslash(D(v, T) \cup D(u, T) \cup\{e\})),
$$

where $D\left(x, T^{\prime}\right)$ is the set of edges of $T^{\prime} \backslash\left(V_{0} \cup \cdots \cup V_{n-1}\right)$ whose ends are in the component containing x, for any $x \in\{u, v\}$ and any $T^{\prime} \in\left\{T, T_{1}, T_{2}\right\}$. It is not hard to see that \mathcal{T} lies in $\mathcal{A}\left(V_{0} \cup \cdots \cup V_{n-2}, w\right)$ and $d_{\mathcal{T}}(w)<f(w)$. But $w \in V_{n-1}$, which is a contradiction. Hence the claim holds.

Since V_{0}, V_{1}, \ldots are pairwise disjoint sets, there exists a positive integer k with $V_{k}=\emptyset$. Let $S=V_{0} \cup \ldots \cup V_{k-1}$. For each $v \in V_{i}$, we have $T \in \mathcal{A}\left(V_{0} \cup \cdots \cup V_{i-1}, v\right)$ and so $d_{T}(v)=f(v)$. This establishes Condition 1 . Because $V_{k}=\emptyset$, the previous claim implies Condition 2. Since f is positive, by considering the construction of H, for each $T^{\prime} \in \mathcal{A}(\emptyset, u), d_{T^{\prime}}(u)=f(u)$, where u is a vertex of H adjacent to a vertex in $V(G) \backslash V(H)$. Thus V_{1} contains all vertices of H adjacent to a vertex in $V(G) \backslash V(H)$. So Condition 3 holds. Since G is connected, S is non-empty. Therefore the lemma is proved.

A special case of the next lemma appeared in [11].

https://daneshyari.com/en/article/4647147

Download Persian Version:

https://daneshyari.com/article/4647147

Daneshyari.com

[^0]: E-mail address: hasanvand@alum.sharif.edu.

