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a b s t r a c t

Liu and Xu (1998) and Ellingham, Nam and Voss (2002) independently showed that ev-
ery k-edge-connected simple graph G has a spanning tree T such that for each vertex v,
dT (v) ≤ ⌈

d(v)

k ⌉+2. In this paper we show that every k-edge-connected graph G has a span-
ning tree T such that for each vertex v, dT (v) ≤ ⌈

d(v)−2
k ⌉ + 2; also if G has k edge-disjoint

spanning trees, then T can be found such that for each vertex v, dT (v) ≤ ⌈
d(v)−1

k ⌉ + 1.
This result implies that every (r − 1)-edge-connected r-regular graph (with r ≥ 4) has a
spanning Eulerian subgraph whose degrees lie in the set {2, 4, 6}; also reduces the edge-
connectivity needed for some theorems due to Barát and Gerbner (2014) and Thomassen
(2008, 2013). Moreover these bounds for finding spanning trees are sharp.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this article, all graphs have no loop, but multiple edges are allowed and a simple graph is a graph without multiple
edges. All integer variables are positive, unless otherwise stated. Let G be a graph. The vertex set, the edge set and the max-
imum degrees of vertices of G are denoted by V (G), E(G) and ∆(G), respectively. Let f be a positive integer-valued function
on V (G), a spanning tree T ofG is called spanning f -tree, if for each vertex v, dT (v) ≤ f (v). For a set A of integers, an A-factor
is a spanning subgraph with vertex degrees in A. Let K be a subgraph of G and S ⊆ V (G), the set of edges of K whose ends
are in the set S, denoted by ES(K).

In 1997, Czumaj and Strothmann used the algorithm in [9] (when the input graph is k-connected) to deduce the following
theorem.

Theorem 1 ([6]). Every k-connected graph G has a spanning tree T such that ∆(T ) ≤ ⌈
∆(G)−2

k ⌉ + 2.

Liu and Xu (1998) investigated spanning trees with small degrees in highly edge-connected simple graphs. They concluded
that every r-edge-connected r-regular simple graph has a connected {1, 2, 3}-factor and remarked that these graphs may
have no connected {1, 2}-factors (Hamiltonian path). These results were rediscovered independently by Ellingham, Nam
and Voss (2002).

Theorem 2 ([7,11]). Every k-edge-connected simple graphG has a spanning tree T such that for each vertex v, dT (v) ≤ ⌈
d(v)

k ⌉+2.

In the special case k = 2, the upper bound can be reduced. Many authors found the following fact with different proofs. In
addition, Theorem 3 was discovered in [6], but for 2-connected graphs.
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Theorem 3 ([1,11,14]). Every 2-edge-connected graph G has a spanning tree T such that for each vertex v, dT (v) ≤ ⌈
d(v)

2 ⌉ + 1.

Let G be a k-edge-connected graph. By the same fundamental process in [11], we show that in Section 2, the graph G has a
spanning tree T such that for each vertex v, dT (v) ≤ ⌈

d(v)−2
k ⌉ + 2. This improves the results of Theorems 1 and 2 and also

implies Theorem 3. Accordingly, this shows that every (r−2)-edge-connected r-regular graph (with r ≥ 3) has a connected
{1, 2, 3}-factor.

The authors of [2,14,15] confirmed the conjecture of Barát–Thomassen [3] for some trees, using the fact that every graph
G with k edge-disjoint spanning trees has a spanning tree with small degrees. In Section 3, we prove that G has a spanning
tree T such that for each vertex v, dT (v) ≤ ⌈

d(v)−1
k ⌉+1. This improved bound reduces the edge-connectivity needed for some

theorems of above mentioned papers, for example, reduces the edge-connectivity of the following theorem to 75 with ex-
actly the same proof. Note that MartinMerker (pers. comm.) can also decrease the necessary edge-connectivity less than 60.

Theorem 4 ([14]). Every 171-edge-connected simple graph has an edge-decomposition into paths of length 3 if and only its size
is divisible by 3.

Jaeger [10] and Catlin [5] independently showed that every 4-edge-connected graph has a spanning Eulerian subgraph.
In Section 4, we show that every (r − 1)-edge-connected r-regular graph (with r ≥ 4) has a spanning Eulerian subgraph
whose degrees lie in the set {2, 4, 6}. Note that for a 4-connected K1,3-free graph, this set can be replaced by {2, 4}, which
is proved in [4].

2. Spanning trees in graphs with high edge-connectivity

Liu and Xu [11] used the idea of Lemma 1 and 2 in [17] and generalized them to prove Theorem 2. Also Ellingham and
Zha [8] found a shorter and more systematic proof for them. We state the following important lemma, which generalizes
Lemma 1 in [11].

Lemma 1. Let G be a connected graph with a positive integer-valued function f on V (G). If G has no spanning f -tree, then
there exists a proper induced subgraph H of G, a spanning f -tree T of H and a non-empty subset S of V (T ), with the following
properties:

1. For each vertex v of S, dT (v) = f (v).
2. There is no edge of H joining components of T \ S.
3. The set S contains all vertices of H which are adjacent to a vertex in V (G) \ V (H).

Proof. Let H be a proper induced subgraph of G with a spanning f -tree T . Consider H with maximum |V (H)|. For any S ⊆

V (H) and v ∈ V (H) \ S, let A(S, v) be the set of all spanning f -trees T ′ of H such that T and T ′ have the same edges, except
for some edges whose ends are in C , where C is the component of T \S containing v. Let V0 = ∅ and for each positive integer
i, recursively define Vi as follows:

Vi = {v ∈ V (H): dT ′(v) = f (v), for all T ′
∈ A(V0 ∪ · · · ∪ Vi−1, v)}.

Now we prove the following claim.

Claim. Let u and v be two vertices in different components of T \ (V0 ∪ · · · ∪ Vn−1). If uv ∈ E(H), then u ∈ Vn or v ∈ Vn.

Proof of Claim. By induction on n. For n = 1, the proof is clear. Assume that the claim is true for n− 1. Nowwe prove it for
n. Suppose to the contrary that vertices u and v are in different components of T \ (V0 ∪· · ·∪Vn−1), uv ∈ E(H) and u, v ∉ Vn.
Then there exist T1 ∈ A(V0 ∪ · · · ∪ Vn−1, v) and T2 ∈ A(V0 ∪ · · · ∪ Vn−1, u) with dT1(v) ≠ f (v) and dT2(u) ≠ f (u). Note that
T1 and T2 are spanning f -trees of H . Let P be the unique path connecting u and v in T . By the induction hypothesis, u and v
are in the same component of T \ (V0 ∪ · · · ∪Vn−2). Hence V (P)∩ (V0 ∪ · · · ∪ Vn−2) = ∅. This implies that V (P)∩Vn−1 ≠ ∅.
Pick w ∈ V (P) ∩ Vn−1. Let e be an edge of P adjacent to w. Now let T be a spanning tree of H with

E(T ) = D(v, T1) ∪ D(u, T2) ∪ {uv}∪

E(T )\


D(v, T ) ∪ D(u, T ) ∪ {e}


,

where D(x, T ′) is the set of edges of T ′
\ (V0 ∪ · · · ∪ Vn−1) whose ends are in the component containing x, for any x ∈ {u, v}

and any T ′
∈ {T , T1, T2}. It is not hard to see that T lies in A(V0 ∪ · · · ∪ Vn−2, w) and dT (w) < f (w). But w ∈ Vn−1, which

is a contradiction. Hence the claim holds.
Since V0, V1, . . . are pairwise disjoint sets, there exists a positive integer kwith Vk = ∅. Let S = V0 ∪ · · · ∪ Vk−1. For each

v ∈ Vi, we have T ∈ A(V0 ∪ · · · ∪ Vi−1, v) and so dT (v) = f (v). This establishes Condition 1. Because Vk = ∅, the previous
claim implies Condition 2. Since f is positive, by considering the construction of H , for each T ′

∈ A(∅, u), dT ′(u) = f (u),
where u is a vertex of H adjacent to a vertex in V (G) \ V (H). Thus V1 contains all vertices of H adjacent to a vertex in
V (G) \ V (H). So Condition 3 holds. Since G is connected, S is non-empty. Therefore the lemma is proved. �

A special case of the next lemma appeared in [11].
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