Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Decomposition of the complete bipartite multigraph into cycles and stars

Hung-Chih Lee

Department of Information Technology, Ling Tung University, Taichung 40852, Taiwan

ARTICLE INFO

Article history: Received 17 November 2013 Received in revised form 25 February 2015 Accepted 25 February 2015 Available online 20 March 2015

Keywords: Decomposition Complete bipartite multigraph Cycle Star

1. Introduction

ABSTRACT

Let C_k denote a cycle of length k, and let S_k denote a star with k edges. For multigraphs F, G, and H, a decomposition of F is a set of edge-disjoint subgraphs of F whose union is F, and a (G, H)-decomposition of F is a decomposition of F into copies of G and H using at least one of each. In this paper, necessary and sufficient conditions for the existence of a (C_k, S_k) -decomposition of the complete bipartite multigraph are given.

© 2015 Elsevier B.V. All rights reserved.

For positive integers *m* and *n*, $K_{m,n}$ denotes the complete bipartite graph with parts of sizes *m* and *n*. A *k*-cycle, denoted by C_k , is a cycle of length *k*. A *k*-star, denoted by S_k , is the complete bipartite graph $K_{1,k}$. A *k*-path, denoted by P_k , is a path with *k* vertices. For a graph *H* and a positive integer λ , we use λH to denote the multigraph obtained from *H* by replacing each edge *e* by λ edges each having the same endpoints as *e*.

Let *F*, *G*, and *H* be multigraphs. A *decomposition* of *F* is a set of edge-disjoint subgraphs of *F* whose union is *F*. A *G*-*decomposition* of *F* is a decomposition of *F* into copies of *G*. If *F* has a *G*-decomposition, we say that *F* is *G*-*decomposable* and write *G*|*F*. A (*G*, *H*)-*decomposition* of *F* is a decomposition of *F* into copies of *G* and *H* using at least one of each. If *F* has a (*G*, *H*)-decomposition, we say that *F* is (*G*, *H*)-*decomposable* and write (*G*, *H*)|*F*. When *G*₁, ..., *G*_t are multigraphs, not necessarily disjoint, we write $G_1 \cup \cdots \cup G_t$ or $\bigcup_{i=1}^t G_i$ for the graph with vertex set $\bigcup_{i=1}^t V(G_i)$ and edge set $\bigcup_{i=1}^t E(G_i)$. When the edge sets are disjoint, $G = \bigcup_{i=1}^t G_i$ expresses the decomposition of *G* into G_1, \ldots, G_t .

A great deal of work has been done on *G*-decomposition of graphs; see survey articles [8,9,12,31] and the book [10]. In particular, decomposition into *k*-cycles has attracted considerable attention; see [11,14,19] for surveys of this topic. Decomposition into *k*-stars has also attracted a fair share of interest; see [13,18,29,30,32,33]. It is natural to consider the problem of decomposing a graph into copies of distinct graphs. The study of (*G*, *H*)-decomposition was introduced by Abueida and Daven in [2]. Abueida and Daven [3] investigated the problem of (*K*_k, *S*_k)-decomposition of the complete graph *K*_n. Abueida and Daven [4] investigated the problem of the (*C*₄, *M*₂)-decomposition of several graph products, where *M*₂ denotes the 4-vertex graph having two disjoint edges. Abueida and O'Neil [7] settled the existence problem for (*C*_k, *S*_{k-1})decomposition of the complete multigraph λK_n for $k \in \{3, 4, 5\}$. Priyadharsini and Muthusamy [21,22] gave necessary and sufficient conditions for the existence of (*G*_n, *H*_n)-decompositions of λK_n and $\lambda K_{n,n}$, where *G*_n, *H*_n $\in \{C_n, P_n, S_{n-1}\}$.

A graph-pair (G, H) of order *m* is a pair of non-isomorphic graphs *G* and *H* on *m* non-isolated vertices such that $G \cup H$ is isomorphic to K_m . Abueida and Daven [2] and Abueida, Daven, and Roblee [5] completely determined the values of *n*

http://dx.doi.org/10.1016/j.disc.2015.02.019 0012-365X/© 2015 Elsevier B.V. All rights reserved.

E-mail address: birdy@teamail.ltu.edu.tw.

for which λK_n admits a (*G*, *H*)-decomposition, where (*G*, *H*) is a graph-pair of order 4 or 5. Abueida, Clark, and Leach [1] and Abueida and Hampson [6] considered the existence of decompositions of $K_n - F$ for the graph-pairs of order 4 and 5, respectively, where *F* is a Hamiltonian cycle, a 1-factor, or a graph that is 1-regular except for one vertex of degree 0.

Furthermore, Shyu [24] investigated the problem of decomposing K_n into paths and stars with k edges, giving a necessary and sufficient condition for k = 3. In [23,25], Shyu considered the existence of a decomposition of K_n into paths and cycles with k edges, giving a necessary and sufficient condition for $k \in \{3, 4\}$. Shyu [27] investigated the problem of decomposing K_n into cycles and stars with k edges, settling the case k = 4. In [26], Shyu considered the existence of a decomposition of $K_{m,n}$ into paths and stars with k edges, giving a necessary and sufficient condition for k = 3.

Recently, Lee [16] and Lee and Lin [17] established necessary and sufficient conditions for the existence of (C_k, S_k) -decompositions of the complete bipartite graph and the complete bipartite graph with a 1-factor removed, respectively. In this paper, we consider the existence of a (C_k, S_k) -decomposition of the complete bipartite multigraph, giving necessary and sufficient conditions.

2. Preliminaries

We first collect some needed terminology and notation. Let *G* be a multigraph. For $S \subseteq V(G)$ and $T \subseteq E(G)$, we use G[S] and G - T to denote the subgraph of *G* induced by *S* and the subgraph of *G* obtained by deleting *T*, respectively. Furthermore, we use $\mu(xy)$ to denote the number of edges of *G* joining *x* and *y*, and $[v_1, \ldots, v_k]$ to denote the *k*-cycle through vertices v_1, \ldots, v_k in order. The *degree* of a vertex *x* of *G*, denoted by $deg_G(x)$, is the number of edges incident with *x*. The vertex of degree *k* in *S_k* is the *center* of *S_k*, and any vertex of degree 1 is a *leaf* of *S_k*. A *multistar* is a star with multiple edges allowed. Given an *S_k*-decomposition of *G*, a *central function c* from *V*(*G*) to the set of nonnegative integers is defined as follows. For each $v \in V(G)$, c(v) is the number of *k*-stars of the decomposition whose center is *v*. The following results are essential to our proof.

Proposition 2.1 (*Lin et al.* [18]). A multistar *H* is S_k -decomposable if and only if there exists a nonnegative integer *q* such that |E(H)| = qk and $\mu(wx) \le q$, where *w* is the center of *H* and *x* is any leaf.

Proposition 2.2 (Hoffman [15]). For a positive integer k, a multigraph G has an S_k -decomposition with central function c if and only if

(1)
$$k \sum_{v \in V(G)} c(v) = |E(G)|,$$

(2) for all $x, y \in V(G), \quad \mu(xy) \le c(x) + c(y),$
(3) for all $S \subseteq V(G), \quad k \sum_{v \in S} c(v) \le \varepsilon(S) + \sum_{x \in S, y \in V(G) - S} \min\{c(x), \mu(xy)\},$

where $\varepsilon(S)$ denotes the number of edges of *G* with both ends in *S*.

In the remainder of the paper, we use (A, B) to denote the bipartition of $\lambda K_{m,n}$, where $A = \{a_0, \ldots, a_{m-1}\}$ and $B = \{b_0, \ldots, b_{n-1}\}$.

3. S_k -decomposition of $\lambda K_{m,n}$

In this section necessary and sufficient conditions for the existence of an S_k -decomposition of $\lambda K_{m,n}$ are given. For the sake of simplicity, we use W to denote the vertex set of $\lambda K_{m,n}$.

Theorem 3.1. For positive integers m and n with $m \ge n$, the complete bipartite multigraph $\lambda K_{m,n}$ is S_k -decomposable if and only if $m \ge k$ and

 $\begin{cases} \lambda m \equiv 0 \pmod{k} & \text{if } n < k \\ \lambda m n \equiv 0 \pmod{k} & \text{if } n \ge k. \end{cases}$

Proof (*Necessity*). Since the maximum size of a star in $\lambda K_{m,n}$ is m, the condition $k \le m$ is necessary. For n < k, all of the k-stars in a decomposition have centers in B. Since each vertex in B has degree λm and each k-star uses k edges, λm is divisible by k. For $n \ge k$, since $\lambda K_{m,n}$ has λmn edges and each subgraph in a decomposition has k edges, k must divide λmn .

(Sufficiency). Let $\lambda m = qk + r$, where q and r are integers with $0 \le r < k$. We first show that $q \ge \lambda$. If r = 0, then $\lambda m = qk$. Since $m \ge k$, we have $q \ge \lambda$. If r > 0, then m > k. Therefore, $q = \lambda m/k - r/k > \lambda - 1$. Since q is an integer, $q \ge \lambda$. For r = 0, let $G_j = \lambda K_{m,n}[\{b_j\} \cup A]$ with $j \in \{0, ..., n - 1\}$. Note that G_j is a multistar with $|E(G_j)| = \lambda m = qk$ and $\lambda K_{m,n} = \bigcup_{j=0}^{n-1} G_j$. Since $q \ge \lambda$ and $\mu(b_j x) = \lambda$ for each $b_j \in B$ and $x \in A$, Proposition 2.1 implies that G_j is S_k -decomposable for each j. Therefore, we may henceforth assume r > 0.

Download English Version:

https://daneshyari.com/en/article/4647151

Download Persian Version:

https://daneshyari.com/article/4647151

Daneshyari.com