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a b s t r a c t

Large sets of disjoint group-divisible designs with block size three and type 2n41 were
first studied by Schellenberg and Stinson and motivated by their connection with perfect
threshold schemes. It is known that such large sets can exist only for n ≡ 0 (mod 3) and
do exist for n = 2k(3m), where m ≡ 1 (mod 2) and k = 0, 3 or k ≥ 5. A special large set
called *LS(2n) has played a key role in obtaining the above results. In this paper, we shall
give a generalization of an *LS(2n) and use it to obtain a similar result for k = 2, 4 and
partially for k = 1.

© 2015 Elsevier B.V. All rights reserved.

0. Preliminary note

This paper is mainly concerned with LS(2n41). In [7] the existence problem for LS(2n41) is solved up to five cases (see
Section 6). However, since [7] uses the present paper, we describe below the state of knowledge prior to [7], to make clear
that that no circular arguments are used and put the results in their historic context. (The present paper was written before
[7], but there has been a substantial delay in its publication.) Then, at the end of Section 6, we describe the current state of
affairs.

1. Introduction

The investigation of large sets of 3-GDDs with type 2n41 was started in 1989 by Schellenberg and Stinson [10]. Such large
sets of 3-GDDs have applications in cryptography to the construction of perfect threshold schemes (see [4,10,11]). Here are
some notations.

A group-divisible design (GDD) is a triple (X,G,B) with the following properties: (i) X is a finite set of points, (ii) G is a
partition of X into subsets called groups, (iii) B is a set of subsets of X (called blocks), such that a group and a block contain
at most one common point, and every pair of points from distinct groups occurs in exactly one block.

The type of a GDD is themultiset {|G| : G ∈ G}.We denote the type by 1u12u2 · · · ,where there are precisely ui occurrences
of i, i ≥ 1.

A GDD is called resolvable if its blocks can be partitioned into some subsets such that each subset forms a partition of the
point set. Such a subset is called a parallel class.
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A GDD is called a k-GDD if every block has size k. Two 3-GDDs with the same group set, say (X,G,A) and (X,G,B), are
said to be disjoint if A ∩ B = ∅. A set of more than two 3-GDDs (having the same group set) are called disjoint if each pair
is disjoint. It is not difficult to see that the maximum number of disjoint 3-GDDs of type tus1 is t(u − 1) for s ≥ t . Such a
collection of disjoint 3-GDDs is called a large set, and denoted by LS(tus1), or LS(tu+1) for t = s. The existence of LS(tn)s has
been investigated by many authors and finally solved in Lei [9].

Theorem 1.1 ([9]). There exists an LS(tn) if and only if n(n−1)t2 ≡ 0 (mod 6) and (n−1)t ≡ 0 (mod 2) and (t, n) ≠ (1, 7).

Chen, Lindner and Stinson [3] gave a tripling construction.

Theorem 1.2 ([3]). Suppose there exists an LS(2u41), where u ≠ 6. Then there exists an LS(23u41).

Since there exists an LS(2341) from [10, Example 4.3] this theorem gives the first infinite family LS(23k41)s for k ≥ 1. In
Cao, Lei and Zhu [1], a special large set called *LS(2n)was introduced, which is based on point set (Zn−2∪{∞,∞′

})×Z2 with
{x}× Z2 as groups, x ∈ Zn−2 ∪{∞,∞′

} and has 2(n− 2) disjoint 3-GDDs such that for any j ∈ Zn−2, the jth and (j+ n− 2)th
3-GDDs both have a sub 3-GDD with {x} × Z2 as groups, x ∈ {j,∞,∞′

}. The concept of an *LS(2n) has played a key role in
obtaining the following existence results.

Theorem 1.3. (1) If an LS(2n41) exists, then n ≡ 0 (mod 3).
(2) [1, Theorem 1.5] For any odd m ≥ 1, there exists an LS(23m41).
(3) [1, Theorem 1.6] For any odd m ≥ 1, there exists an LS(28(3m)41).
(4) [2, Theorem 1.2] For any odd m ≥ 1 and any integer k ≥ 5, there exists an LS(22k(3m)41).

By this theorem, the existence of LS(22ku41)s for odd u ≡ 0 (mod 3) has been determined for k = 0, 3 and k ≥ 5.
For k = 1, 2 and 4, partial results can be obtained by using the constructions in [2]. In this paper, we almost completely
determine the existence of LS(22ku41)s for k = 2, 4 and partially for k = 1 in the following.

Theorem 1.4. For any odd m ≥ 5 and k ∈ {2, 4}, there exists an LS(22k(3m)41).

Theorem 1.5. For any odd m ≥ 1, there exists an LS(22(9m)41).

A generalization of an *LS(2n), denoted by LS(2v+2, 2u+2), will be defined and used to construct an LS(23v41) in Section 2.
A quadrupling construction for LS(2v+2, 2u+2)s will be given in Section 3. In Section 4, the construction for an LS(21841) is
given. In Section 5, the idea of large sets with holes by Teirlinck [12] will be used to produce the needed LS(2v+2, 2u+2)s,
which are then used to prove Theorems 1.4 and 1.5.

For notations used and not defined in this paper, the reader may refer to [5].

2. A tripling construction using an LS(2v+2, 2u+2)

Let X = Zt ×Zu be a v-set, Yi = {i}×Zu, i ∈ Zt . For any x = (j,m) ∈ X , letGx = {{y}×Z2 : y ∈ X\Yj}∪{(Yj∪{∞1,∞2})×

Z2}. An LS(2v+2, 2u+2) is a collection of 2v 3-GDD(2v−u(2(u + 2))1)s, i.e. {(X ∪ {∞1,∞2})× (Z2,Gx,Bxr) : x ∈ X, r ∈ Z2},
such that Bxr ∩ Byt = ∅, where x, y ∈ X , r, t ∈ Z2 and (x, r) ≠ (y, t).

Since each 3-GDD of type 2v−u(2(u + 2))1 contains (4C2
v−u + 2(v − u)(2u + 4))/3 blocks, an LS(2v+2, 2u+2) contains

2v(4C2
v−u +2(v−u)(2u+4))/3 blocks. Let G = {{x}×Z2 : x ∈ X ∪{∞1,∞2}}. Suppose T is a triple in (X ∪{∞1,∞2})×Z2

such that |T ∩ G| ≤ 1 for any G ∈ G. The number of T is 8C3
v+2 − 8vC3

u+2/u. Some simple computation shows that
8C3

v+2 −8vC3
u+2/u = 2v(4C2

v−u +2(v−u)(2u+4))/3. So, it is clear that if T is contained in any (Yi ∪{∞1,∞2})×Z2, i ∈ Zt ,
then T ∉ Bxr . For later use, we state it in the following lemma.

Lemma 2.1. The block sets of an LS(2v+2, 2u+2) cannot contain the two kinds of blocks: B = {Ω, (x, r), (x′, r ′)} and B =

{(x, r), (x′, r ′), (x′′, r ′′)}, whereΩ ∈ {∞1,∞2} × Z2, x, x′ and x′′ belong to the same Yi, r, r ′, r ′′
∈ Z2.

Suppose there exists an LS(2u+2). For i ∈ Zt , construct on (Yi ∪ {∞1,∞2}) × Z2 an LS(2u+2) with groups {x} × Z2,
x ∈ Yi ∪ {∞1,∞2}. Denote the 2u block sets of the 3-GDDs by Axr , (x, r) ∈ Yi × Z2. Denote Cxr = Bxr ∪ Axr . Then

{(X ∪ {∞1,∞2})× (Z2,G,Cxr) : i ∈ Zt , x ∈ Yi, r ∈ Z2}
is an LS(2v+2). It is clear that we may consider an LS(2v+2, 2u+2) as an LS(2v+2)missing sub-LS(2u+2)s. In particular, when
u = 1, an LS(2v+2, 23) is just an LS(2v+2) missing sub-LS(23)s. Since an LS(23) exists, an LS(2v+2, 23) is equivalent to an
*LS(2v+2). This means that the concept of an LS(2v+2, 2u+2) is a generalization of the concept of an *LS(2n).

From an *LS(2v+2) we can obtain an LS(23v41), see [1, Theorem 3.1]. In this section we shall show a similar tripling
construction using an LS(2v+2, 2u+2) in stead of an *LS(2v+2). Before we can state the tripling construction, we need some
new concepts and notations.

Let X be a set of cardinality ut , and let H be a partition of X into t subsets of size u (elements of H are called holes). Let L
be a square array of side ut , indexed by X , which satisfies the following properties:
1. If x, y ∈ H and H ∈ H , then L(x, y) is empty, otherwise L(x, y) contains a symbol of X .
2. Row or column x of L contains all the symbols in X\H , where x ∈ H ∈ H .
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