Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Constructions of large sets of disjoint group-divisible designs $LS(2^{n}4^{1})$ using a generalization of *LS(2^{*n*})

H. Cao^{a,*}, J. Lei^b, L. Zhu^c

^b Mathematics and Information Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China

^c Department of Mathematics, Suzhou University, Suzhou 215006, China

ARTICLE INFO

Article history: Received 10 November 2014 Received in revised form 1 March 2015 Accepted 3 March 2015 Available online 4 April 2015

Keywords: Large set Group-divisible design Latin square Threshold scheme

0. Preliminary note

This paper is mainly concerned with $LS(2^{n}4^{1})$. In [7] the existence problem for $LS(2^{n}4^{1})$ is solved up to five cases (see Section 6). However, since [7] uses the present paper, we describe below the state of knowledge prior to [7], to make clear that that no circular arguments are used and put the results in their historic context. (The present paper was written before [7], but there has been a substantial delay in its publication.) Then, at the end of Section 6, we describe the current state of affairs.

1. Introduction

The investigation of large sets of 3-GDDs with type $2^{n}4^{1}$ was started in 1989 by Schellenberg and Stinson [10]. Such large sets of 3-GDDs have applications in cryptography to the construction of perfect threshold schemes (see [4,10,11]). Here are some notations.

A group-divisible design (GDD) is a triple $(X, \mathcal{G}, \mathcal{B})$ with the following properties: (i) X is a finite set of points, (ii) \mathcal{G} is a partition of X into subsets called groups, (iii) B is a set of subsets of X (called *blocks*), such that a group and a block contain at most one common point, and every pair of points from distinct groups occurs in exactly one block.

The type of a GDD is the multiset $\{|G|: G \in \mathcal{G}\}$. We denote the type by $1^{u_1}2^{u_2}\cdots$, where there are precisely u_i occurrences of i, i > 1.

A GDD is called resolvable if its blocks can be partitioned into some subsets such that each subset forms a partition of the point set. Such a subset is called a parallel class.

http://dx.doi.org/10.1016/j.disc.2015.03.006 0012-365X/© 2015 Elsevier B.V. All rights reserved.

^a Institute of Mathematics, Nanjing Normal University, Nanjing 210023, China

ABSTRACT

Large sets of disjoint group-divisible designs with block size three and type $2^n 4^1$ were first studied by Schellenberg and Stinson and motivated by their connection with perfect threshold schemes. It is known that such large sets can exist only for $n \equiv 0 \pmod{3}$ and do exist for $n = 2^k(3m)$, where $m \equiv 1 \pmod{2}$ and k = 0, 3 or k > 5. A special large set called $*LS(2^n)$ has played a key role in obtaining the above results. In this paper, we shall give a generalization of an $LS(2^n)$ and use it to obtain a similar result for k = 2, 4 and partially for k = 1.

© 2015 Elsevier B.V. All rights reserved.

CrossMark

^{*} Corresponding author. E-mail addresses: caohaitao@njnu.edu.cn (H. Cao), leijg1964@yahoo.com.cn (J. Lei), Lzhu@suda.edu.cn (L. Zhu).

A GDD is called a *k*-GDD if every block has size *k*. Two 3-GDDs with the same group set, say $(X, \mathcal{G}, \mathcal{A})$ and $(X, \mathcal{G}, \mathcal{B})$, are said to be *disjoint* if $\mathcal{A} \cap \mathcal{B} = \emptyset$. A set of more than two 3-GDDs (having the same group set) are called disjoint if each pair is disjoint. It is not difficult to see that the maximum number of disjoint 3-GDDs of type $t^{u}s^{1}$ is t(u - 1) for $s \ge t$. Such a collection of disjoint 3-GDDs is called a *large set*, and denoted by $LS(t^{u}s^{1})$, or $LS(t^{u+1})$ for t = s. The existence of $LS(t^{n})$ s has been investigated by many authors and finally solved in Lei [9].

Theorem 1.1 ([9]). There exists an LS(t^n) if and only if $n(n-1)t^2 \equiv 0 \pmod{6}$ and $(n-1)t \equiv 0 \pmod{2}$ and $(t, n) \neq (1, 7)$.

Chen, Lindner and Stinson [3] gave a tripling construction.

Theorem 1.2 ([3]). Suppose there exists an LS($2^{u}4^{1}$), where $u \neq 6$. Then there exists an LS($2^{3u}4^{1}$).

Since there exists an LS($2^{3}4^{1}$) from [10, Example 4.3] this theorem gives the first infinite family LS($2^{3^{k}}4^{1}$)s for $k \ge 1$. In Cao, Lei and Zhu [1], a special large set called *LS(2^{n}) was introduced, which is based on point set ($Z_{n-2} \cup \{\infty, \infty'\}$) × Z_{2} with {x} × Z_{2} as groups, $x \in Z_{n-2} \cup \{\infty, \infty'\}$ and has 2(n - 2) disjoint 3-GDDs such that for any $j \in Z_{n-2}$, the *j*th and (j + n - 2)th 3-GDDs both have a sub 3-GDD with {x} × Z_{2} as groups, $x \in \{j, \infty, \infty'\}$. The concept of an *LS(2^{n}) has played a key role in obtaining the following existence results.

Theorem 1.3. (1) *If an* $LS(2^n 4^1)$ *exists, then* $n \equiv 0 \pmod{3}$.

(2) [1, Theorem 1.5] For any odd $m \ge 1$, there exists an LS($2^{3m}4^{1}$).

(3) [1, Theorem 1.6] For any odd $m \ge 1$, there exists an LS($2^{8(3m)}4^1$).

(4) [2, Theorem 1.2] For any odd $m \ge 1$ and any integer $k \ge 5$, there exists an $LS(2^{2^{k}(3m)}4^{1})$.

By this theorem, the existence of $LS(2^{2^k u}4^1)$ s for odd $u \equiv 0 \pmod{3}$ has been determined for k = 0, 3 and $k \ge 5$. For k = 1, 2 and 4, partial results can be obtained by using the constructions in [2]. In this paper, we almost completely determine the existence of $LS(2^{2^k u}4^1)$ s for k = 2, 4 and partially for k = 1 in the following.

Theorem 1.4. For any odd $m \ge 5$ and $k \in \{2, 4\}$, there exists an $LS(2^{2^{k}(3m)}4^{1})$.

Theorem 1.5. For any odd $m \ge 1$, there exists an LS($2^{2(9m)}4^1$).

A generalization of an ${}^{*}LS(2^{n})$, denoted by $LS(2^{\nu+2}, 2^{u+2})$, will be defined and used to construct an $LS(2^{3\nu}4^{1})$ in Section 2. A quadrupling construction for $LS(2^{\nu+2}, 2^{u+2})$ s will be given in Section 3. In Section 4, the construction for an $LS(2^{18}4^{1})$ is given. In Section 5, the idea of large sets with holes by Teirlinck [12] will be used to produce the needed $LS(2^{\nu+2}, 2^{u+2})$ s, which are then used to prove Theorems 1.4 and 1.5.

For notations used and not defined in this paper, the reader may refer to [5].

2. A tripling construction using an LS $(2^{\nu+2}, 2^{u+2})$

Let $X = Z_t \times Z_u$ be a *v*-set, $Y_i = \{i\} \times Z_u$, $i \in Z_t$. For any $x = (j, m) \in X$, let $\mathcal{G}_x = \{\{y\} \times Z_2 : y \in X \setminus Y_j\} \cup \{(Y_j \cup \{\infty_1, \infty_2\}) \times Z_2\}$. An LS $(2^{v+2}, 2^{u+2})$ is a collection of 2v 3-GDD $(2^{v-u}(2(u+2))^1)$ s, i.e. $\{(X \cup \{\infty_1, \infty_2\}) \times (Z_2, \mathcal{G}_x, \mathcal{B}_{xr}) : x \in X, r \in Z_2\}$, such that $\mathcal{B}_{xr} \cap \mathcal{B}_{yt} = \emptyset$, where $x, y \in X, r, t \in Z_2$ and $(x, r) \neq (y, t)$.

Since each 3-GDD of type $2^{v-u}(2(u+2))^1$ contains $(4C_{v-u}^2 + 2(v-u)(2u+4))/3$ blocks, an $LS(2^{v+2}, 2^{u+2})$ contains $2v(4C_{v-u}^2 + 2(v-u)(2u+4))/3$ blocks. Let $\mathcal{G} = \{\{x\} \times Z_2 : x \in X \cup \{\infty_1, \infty_2\}\}$. Suppose *T* is a triple in $(X \cup \{\infty_1, \infty_2\}) \times Z_2$ such that $|T \cap G| \leq 1$ for any $G \in \mathcal{G}$. The number of *T* is $8C_{v+2}^3 - 8vC_{u+2}^3/u$. Some simple computation shows that $8C_{v+2}^3 - 8vC_{u+2}^3/u = 2v(4C_{v-u}^2 + 2(v-u)(2u+4))/3$. So, it is clear that if *T* is contained in any $(Y_i \cup \{\infty_1, \infty_2\}) \times Z_2$, $i \in Z_t$, then $T \notin \mathcal{B}_{xr}$. For later use, we state it in the following lemma.

Lemma 2.1. The block sets of an LS($2^{\nu+2}$, 2^{u+2}) cannot contain the two kinds of blocks: $B = \{\Omega, (x, r), (x', r')\}$ and $B = \{(x, r), (x', r'), (x'', r'')\}$, where $\Omega \in \{\infty_1, \infty_2\} \times Z_2$, x, x' and x'' belong to the same $Y_i, r, r', r'' \in Z_2$.

Suppose there exists an LS(2^{u+2}). For $i \in Z_t$, construct on $(Y_i \cup \{\infty_1, \infty_2\}) \times Z_2$ an LS(2^{u+2}) with groups $\{x\} \times Z_2$, $x \in Y_i \cup \{\infty_1, \infty_2\}$. Denote the 2u block sets of the 3-GDDs by \mathcal{A}_{xr} , $(x, r) \in Y_i \times Z_2$. Denote $\mathcal{C}_{xr} = \mathcal{B}_{xr} \cup \mathcal{A}_{xr}$. Then

 $\{(X \cup \{\infty_1, \infty_2\}) \times (Z_2, \mathcal{G}, \mathcal{C}_{xr}) : i \in Z_t, x \in Y_i, r \in Z_2\}$

is an LS(2^{v+2}). It is clear that we may consider an LS(2^{v+2} , 2^{u+2}) as an LS(2^{v+2}) missing sub-LS(2^{u+2})s. In particular, when u = 1, an LS(2^{v+2} , 2^3) is just an LS(2^{v+2}) missing sub-LS(2^3)s. Since an LS(2^3) exists, an LS(2^{v+2} , 2^3) is equivalent to an *LS(2^{v+2}). This means that the concept of an LS(2^{v+2} , 2^{u+2}) is a generalization of the concept of an *LS(2^n). From an *LS(2^{v+2}) we can obtain an LS(2^{v+2} , 2^{u+2}), see [1, Theorem 3.1]. In this section we shall show a similar tripling

From an *LS($2^{\nu+2}$) we can obtain an LS($2^{3\nu}4^1$), see [1, Theorem 3.1]. In this section we shall show a similar tripling construction using an LS($2^{\nu+2}$, 2^{u+2}) in stead of an *LS($2^{\nu+2}$). Before we can state the tripling construction, we need some new concepts and notations.

Let X be a set of cardinality ut, and let \mathcal{H} be a partition of X into t subsets of size u (elements of \mathcal{H} are called *holes*). Let L be a square array of side ut, indexed by X, which satisfies the following properties:

1. If $x, y \in H$ and $H \in \mathcal{H}$, then L(x, y) is empty, otherwise L(x, y) contains a symbol of X.

2. Row or column x of L contains all the symbols in $X \setminus H$, where $x \in H \in \mathcal{H}$.

Download English Version:

https://daneshyari.com/en/article/4647161

Download Persian Version:

https://daneshyari.com/article/4647161

Daneshyari.com