Lower bounds on the number of edges in edge-chromatic-critical graphs with fixed maximum degrees

Xuechao Li ${ }^{\mathrm{a}, *}$, Bing Wei ${ }^{\text {b }}$
${ }^{\text {a }}$ The University of Georgia, Athens, GA 30602, United States
${ }^{\mathrm{b}}$ Department of Mathematics, The University of Mississippi, University, MS 38677, United States

ARTICLE INFO

Article history:

Received 20 December 2013
Received in revised form 16 June 2014
Accepted 18 June 2014
Available online 4 July 2014

Keywords:
Edge chromatic number
Critical graph

Abstract

In this article, we provide new lower bounds for the size of edge chromatic critical graphs with maximum degrees of $10,11,12,13,14$, furthermore we characterize their class one properties.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let V and E be the vertex set and edge set of a graph G, while $|V|$ and $|E|$ represent the cardinality of V and E of G, respectively. For a vertex x, set $N(x)=\{v: x v \in E(G)\}$ and $d(x)=|N(x)|$, the degree of x in G. We use Δ and δ to denote the maximum and the minimum degrees of G, respectively. For a vertex set S of G, set $N(S)=\cup_{x \in S} N(x)$. A k-edge-coloring of a graph G is a function $\phi: E(G) \mapsto\{1, \ldots, k\}$ such that any two adjacent edges receive different colors. The edge chromatic number, denoted by $\chi_{e}(G)$, of a graph G is the smallest integer k such that G has a k-edge-coloring. Vizing's Theorem [13] states that the edge chromatic number of a simple graph G is either Δ or $\Delta+1$. A graph G is class one if $\chi_{e}(G)=\Delta$ and is class two otherwise. A class two graph G is critical if $\chi_{e}(G-e)<\chi_{e}(G)$ for each edge e of G. A critical graph G is Δ-critical if it has maximum degree Δ.

The following conjecture was proposed by Vizing [13] concerning the sizes of critical graphs.
Conjecture 1.1. If $G=(V, E)$ is a critical simple graph, then $|E| \geq \frac{1}{2}(|V|(\Delta-1)+3)$.
Some best known lower bounds of size of critical graphs are listed below [7,5,16,15,10]. Let G be a Δ-critical graph with average degree q, where $q=\frac{\sum_{v \in V(G)} d(v)}{|V|}$.

$$
\begin{array}{lllll}
\text { If } \Delta=7, & q \geq 6 . & \text { If } \Delta=8, & q \geq \frac{20}{3} . & \text { If } \Delta=9, \\
\text { If } \Delta=10, & q \geq 8 . & \text { If } \Delta=11, & q \geq 8.6 . & \text { If } \Delta=12, \\
\text { If } 8 \leq \Delta \leq 17, & q \geq \frac{4}{7}(\Delta+3) . & \text { If } \Delta \geq 8, & q \geq \frac{2}{3}(\Delta+1) . &
\end{array}
$$

We improve some of the earlier results in the following theorem: main theorem.

[^0]Theorem 1.2. Let G be a Δ-critical graph with $\Delta \geq 8$. Then $|E(G)| \geq \frac{|V(G)|}{2} q$ where $q=8.25,9, \frac{126}{13}, \frac{134}{13}, \frac{142}{13}$ for $\Delta=10,11$, 12, 13, 14 respectively.

We show some lemmas in Section 2, and then provide our proof of the main theorem in Section 3.

2. Adjacency lemmas

Throughout this paper, G is a Δ-critical graph with $\Delta \geq 10$. A k-vertex (or, ($\leq k$)-vertex, ($\geq k$)-vertex) is a vertex of degree k (or $\leq k, \geq k$, respectively). A vertex w is a k-neighbor of x if $w \in N(x)$ and $d(w)=k$. Let V_{k} (or $V_{\leq k}$) be the set of vertices with degree k (or $\leq k$). Let $d_{\leq k}(x)$ denote the number of $(\leq k)$-vertices adjacent to x. Similarly define $d_{\geq k}(x)$. Let ϕ be the Δ-edge coloring of $G-x w, \phi(v)$ be the set of colors of the edges adjacent to the vertex v under edge coloring ϕ. A vertex v sees color j if v is adjacent to an edge colored by j. Denote by $P_{j, k}(v)_{\phi}$ the (j, k)-bi-colored path starting at v under edge coloring ϕ, or by $P_{j, k}(v)$ if there is no confusion. The following one belongs to Vizing [14], which will be abbreviated as VAL in this article.
VAL: If $x w$ is an edge of a Δ-critical graph G, then x has at least $(\Delta-d(w)+1) \Delta$-neighbors. Any vertex of G has at least two Δ-neighbors.
Adjacency Condition [17,11]: Let G be Δ-critical, $x w \in E(G)$ and $d(x)+d(w)=\Delta+2$. The following hold: (1) every vertex of $N(x, w) \backslash\{x, w\}$ is a Δ-vertex; (2) every vertex of $N(N(x, w)) \backslash\{x, w\}$ is of degree at least $\Delta-1$; and (3) if $d(x), d(w)<\Delta$, then every vertex of $N(N(x, w)) \backslash\{x, w\}$ is a Δ-vertex.

Through this paper, without loss of generality, under coloring ϕ, edges incident with x in $G-x w$ are colored by $1,2, \ldots$, $d-1$, while those incident with w are colored by $\Delta-k+2, \ldots \Delta$ where $d=d(x), k=d(w)$.

Let C_{1} be the set of colors present at only one of x, w and C_{2} be the set of colors present at both. Further let C_{11} be the set of colors present only at x, and C_{12} be the set of colors present only at w. We may assume that $C_{1}=C_{11} \cup C_{12}=\{1, \ldots, \Delta-k+$ $1\} \cup\{d, d+1, \ldots, \Delta\}$ and $C_{2}=\{\Delta-k+2, \ldots, d-1\}$, where $C_{2}=\emptyset$ if $d+k=\Delta+2 .\left|C_{1}\right|=2 \Delta-d-k+2,\left|C_{2}\right|=d+k-$ $\Delta-2$. Let $C_{v}=\{i$: vertex v misses color $i\}$.

Lemma 2.1 ([8]). Let $x w$ be an edge of G with $d(x)+d(w)=\Delta+2$ and $d(x), d(w)<\Delta$. Then every vertex of $N(N(N(x, w))) \backslash$ $\{x, w, N(x, w), N(N(x, w))\}$ (assume that it is not empty) is adjacent to all Δ-vertices.

In order to give improved adjacency properties on the i-vertex, we provide some claims. First two claims are equivalent to Facts 1 and 2 in [9], and for the purpose of convenience of uniform discussion, we re-write them as Claims A and B.

Claim A. For each neighbor w_{j} of w in $G-x w$ where $\phi\left(w w_{j}\right)=j$ present only at w, then w_{j} must see each color in C_{1}.
Claim A will be often used in the discussion through this paper without notifying.
Claim B. For each neighbor x^{i} of x where $\phi\left(x x^{i}\right)=i$ present only at x, then x^{i} must see each color in C_{1}. Note that x has at least $\Delta-k+1$ such x^{i}.

Due to Claim B, we call a swapping (i, j) a nice swapping if it does not change the set of colors of edges incident with x and w in $G-x w$.

Claim C. For a neighbor w_{b} of w where $b \in C_{2}$, if one of such w_{b}^{\prime} s misses a color in C_{1}, then we could assume that one of those $w_{b}^{\prime} s$ misses color 1 . Note that we can only assure there is one such vertex w_{b}.

We assume, without loss of generality, that w_{b} misses Δ but sees 1 , then we swap color 1 with the missing color along the path starting at w_{b}, by Claim B, this swapping is a nice one because it does not affect the colors of edges that are incident with x, w. So w_{b} misses color 1 .

Claim D which follows is similar to Fact 4 in [9] but it is slightly stronger. So the proof is provided in the appendix.
Claim D. Let x and w be adjacent in Δ-critical graph G with $d(x)=d, d(w)=k$. $G-x w$ has a Δ-edge coloring ϕ. Let $x x^{a} y$ be a path in $G-x w$ where $\phi\left(x x^{a}\right)=a \in C_{11}$ and $y \neq w$ such that $\phi\left(x^{a} y\right) \in C_{1}$. Then y must see each color in C_{1}, that is, $d(y) \geq$ $2 \Delta-d-k+2$. Note that there are $2 \Delta-d-k+1$ such $y^{\prime} s$, and some of them may be adjacent to vertices in $N(x)$.

Lemma 2.2. For a Δ-edge coloring ϕ of $G-x w$ with $d(x)=d, d(w)=k$ (see Fig. 1), let $x x^{\alpha} y$ and $x x^{r} u$ be paths that start at x, where $\phi\left(x x^{\alpha}\right)=\alpha$ present only at x and $\phi\left(x x^{r}\right)=r$ is a color in C_{2}. If there is a vertex $w_{j} \in N(w)$, where $\phi\left(w w_{j}\right)=j \in C_{12}$, and w_{j} misses $r \in C_{2}$, or if there is a $w_{r} \in N(w)$ with $\phi\left(w w_{r}\right)=r \in C_{2}$, and w_{r} misses a color in C_{1}, then we have the following:
(i) x^{α} must see $r \in C_{2}$. (ii) y sees each color in C_{1} and r; further, if $\phi\left(x^{\alpha} y\right)=r \in C_{2}$, then y sees each color in C_{1} and color $r^{\prime}(\neq r)$ if there is a $w_{j^{\prime}} \in N(w)\left(j^{\prime} \in C_{12}\right)$ missing $r^{\prime} \in C_{2}$, or there is a $w_{r^{\prime}} \in N(w)$ with $\phi\left(w w_{r}^{\prime}\right)=r^{\prime}$ and $w_{r^{\prime}}$ misses a color in C_{1}. (iii) x^{r} must see each color in C_{1} and also color r^{\prime} as described in (ii). (iv) u sees each color in C_{1} and also sees r^{\prime} as described in (ii).

Proof. The proof consists of two parts: Part I and Part II. Part I: If there is a vertex $w_{j} \in N(w)$, where $\phi\left(w w_{j}\right)=j \in C_{12}$, and w_{j} misses a color $r \in C_{2}$, then our results hold. Part II: If there is a $w_{r} \in N(w)$ with $\phi\left(w w_{r}\right)=r \in C_{2}$, and w_{r} misses a color in C_{1}, then our results hold.

https://daneshyari.com/en/article/4647175

Download Persian Version:

https://daneshyari.com/article/4647175

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: xcli@uga.edu (X. Li), bwei@olemiss.edu (B. Wei).

