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a b s t r a c t

This article provides bounds on the size of a 3-uniform linear hypergraph with restricted
matching number and maximum degree. In particular, we show that if a 3-uniform,
linear family F has maximum matching size ν and maximum degree ∆ such that ∆ ≥
23
6 ν

1 +

1
ν−1


, then | F |≤ ∆ν.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let V be a set of vertices and letF ⊆ 2V be a set of distinct subsets of V . A set systemF is k-uniform for a positive integer
k if |A| = k for all A ∈ F . A set system F is linear if |A ∩ B| ≤ 1 for all distinct A, B in F . For a hypergraph G = (V , F ), the
set V is called the set of vertices of G and the set F ⊆ 2V is called the set of hyper-edges of G. The size of a k-uniform linear
hypergraph G = (V , F ) is |F |—the number of its hyper-edges. A matching in G (or F ) is a collection of pairwise disjoint
hyper-edges of G. The size of a maximum matching in F shall be denoted by ν(F ). Also, degree of a vertex and maximum
degree of G is defined in a usual familiar way. For any x ∈ V , define Fx = {A ∈ F | x ∈ A} and ∆(F ) = max{|Fx| | x ∈ V }.
The objective of this article is to find a bound on the size ofF for given values of∆(F ) and ν(F ). Throughout the remainder
of this article unless otherwise stated, F shall be a 3-uniform linear set system with maximum matching size ν(F ) = ν
and maximum degree ∆(F ) = ∆. Also, for any set system H and B ⊆ H , we shall denote by XB the vertex set of B that
is XB :=


A∈B A.

The problem of bounding the size of a uniform family by restrictingmatching size andmaximumdegree has been studied
for simple graphs in [4,2]. These articles were in turn inspired by the sunflower lemma due to Erdős and Rado (see [7]). A
sunflower with s petals is a collection of sets A1, A2, . . . , As and a set X (possibly empty) such that Ai∩Aj = X whenever i ≠ j.
The set X is called the core of the sunflower. A linear family admits two kinds of sunflowers: (i) a matching is a sunflower
with an empty core; (ii) a collection of hyper-edges incident at a vertex. It is a well-known result (due to Erdős–Rado [7])
that a k-uniform set system, with more members than k!(s−1)k admits a sunflower with s petals (for a proof see [1]). Other
bounds that ensure the existence of a sunflower with s petals are known in the case of s = 3 with block size k (see [11]).
However, not much progress has been made towards the general case. This article considers the dual problem of finding
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the maximum size of a 3-uniform, linear family F that admits no sunflower with s petals, i.e., s > ν(F ) and s > ∆(F ). In
particular, we find the maximum size of a 3-uniform, linear family F that admits no sunflower with ν + 1 petals of empty
core and no sunflower with ∆ + 1 petals of core cardinality one. Thus, this problem belongs to the class of Turán problems
that find a bound on the size of the edge set of a graph (or a hypergraph) that avoids a substructure or substructures (see [3]).
A significant recent result in this area is [8] where the aim is to find a bound on the size of a uniform family subject to its
restricted matching size and number of vertices. This generalizes for hypergraphs a result on the size of the edge set of a
simple graph due to Erdős and Gallai [6]. This article aims to share some new bounds and also brings forth some interesting
questions in this well studied area. The following remark on the size of a family shall be useful later in proving the main
result.

Remark 1. For a positive integer ∆, let a 3-uniform family G be a sunflower with ∆ petals and core of size one. For any
positive integer ν, let F consist of ν components where each component is isomorphic to G. It is obvious that ν(F ) =

ν, ∆(F ) = ∆ and |F | = 1ν.

The main result, Theorem 3, establishes sunflowers as maximal examples of 3-uniform, linear families F that have
maximum number of hyper-edges for restricted values of maximummatching ν(F ) and maximum degree ∆(F ) if degree
is approximately four times thematching size. It is natural to find an extension of the result for k-uniform linear families. The
general result is not the focus of the article. However, if ∆ is not large enough relative to ν then there are families such that
|F | > ∆(F )ν(F ). For example projective plane naturally induces a hypergraph F with uniformity k = q + 1, maximum
degree q + 1 and matching number 1, while the number of edges |F | = q2 + q + 1.

2. Results

Our aim in this article is to prove the following two results.

Theorem 2. Let F be a 3-uniform linear set system with maximummatching size ν(F ) = ν and maximum degree ∆(F ) = ∆.
If ∆ ≥ 5, then |F | ≤ 21ν .

The main result, of this article is a tighter bound in the case ∆ is approximately greater than 4ν. The precise statement
follows.

Theorem 3 (The Main Result). Let F be a 3-uniform linear set system with maximum matching size ν(F ) = ν and maximum
degree ∆(F ) = ∆. If ∆ ≥

23
6 ν(1 +

1
ν−1 ), then |F | ≤ 1ν .

Let ν be any positive integer. It is worthwhile to note that there are 3-uniform linear families F with ν = ν(F ) such that
|F | > ∆(F )ν(F ). In the next section, we construct such families and thus establish the importance of the main result-
Theorem 3.

3. Families with large size

Let F be a 3-uniform linear family with ∆ := ∆(F ) and ν := ν(F ). We present some examples such that |F | > 1ν.

(i) There are block designs F with block size three such that |F | ≥ ν(F )∆(F ). For example, consider Steiner triples
S(n, 3, 2). A Steiner system S(n, k, r) is a set system on n vertices such that each member has cardinality k and every
r-subset of vertices is contained in a unique member (also called block) of the family S(n, k, r). It is well known that
S(n, 3, 2) exists if and only if n ≥ 3, and n ≡ 1(mod 6) or n ≡ 3(mod 6) (see [5], for instance).

• If n = 6m + 1 and F is an S(n, 3, 2) then |F | =
1
3


6m+1

2


= m(6m + 1), ∆(F ) = 3m, and ν(F ) ≤ 2m, so

|F | > ∆(F )ν(F ).
(ii) By the method given in [2], we can construct a simple graph G for any ∆ := ∆(G) and ν := ν(G) such that

|E(G)| = ν∆ + ⌊
ν

⌈
∆
2 ⌉

⌋⌊
∆

2 ⌋. Note that if 2 ≤ ∆ ≤ 2ν then |E(G)| > 1ν. Let Y be a set such that Y ∩ V (G) = ∅

and |Y | = |E(G)|. We order the edges {e1, e2, . . . , e|E(G)|} in E(G) randomly and let Y = {y1, y2, . . . , y|E(G)|}. We
define a linear, 3-uniform family F such that ν(F ) = ν(G) and ∆(F ) = ∆(G). For i ∈ {1, 2, . . . , |E(G)|}, let
Ai := ei ∪ {yi}. Now let F := {Ai| i ∈ {1, 2, . . . , |E(G)|}}. It is obvious that F is a 3-uniform, linear family. Also note that
ν(F ) = ν, ∆(F ) = ∆ and |F | = |E(G)|. Thus, |F | = |E(G)| = ν∆ + ⌊

ν

⌈
∆
2 ⌉

⌋⌊
∆

2 ⌋ > 1ν.

Theorem3 states that if∆ is large enough compared to ν then |F | ≤ ν∆. On the other hand the example in part (ii) above
shows that for any positive integer ν, there are families F such that |F | > 1ν with 2 ≤ ∆ ≤ 2ν. It would be interesting to
determine the exact value f (ν) so that for any 3-uniform, linear family F with ∆(F ) = ∆ ≥ f (ν) and ν(F ) = ν, we have
|F | ≤ ν∆.
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