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a b s t r a c t

Let wP (Cl) (wT (Cl)) be the minimum integer k with the property that every 3-polytope
(respectively, every plane triangulation) with minimum degree 5 has an l-cycle with
weight, defined as the degree-sum of all vertices, at most k.

In 1998, O.V. Borodin and D.R. Woodall proved wT (C4) = 25 and wT (C5) = 30. We
prove that wP (C4) = 26 and wP (C5) = 30.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The degree d(x) of a vertex or face x in a plane graph G is the number of its incident edges. A k-vertex (k-neighbor, k-face)
is a vertex (neighbor, face) with degree k, a k+-vertex has degree at least k, etc. The minimum vertex degree of G is δ(G). We
will drop the arguments whenever this does not lead to confusion.

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but d(x) ≥ 3 for
every vertex and face x. As proved by Steinitz [27], the 3-connected plane graphs are planar representations of the convex
3-dimensional polytopes, called hereafter 3-polytopes.

In this note, we consider the class M5 of NPMs with δ = 5 and its subclasses P5 of 3-polytopes and T5 of plane triangu-
lations, where we define a triangulation to be simple (without loops or multiple edges), so that T5 ⊂ P5 ⊂ M5. A cycle on k
vertices is denoted by Ck, and Sk stands for a k-star centered at a 5-vertex.

In 1904, Wernicke [28] proved that if M5 ∈ M5 then M5 contains a vertex of degree 5 adjacent to a vertex of degree at
most 6. This result was strengthened by Franklin [15] in 1922 to the existence of a vertex of degree 5 with two neighbors of
degree at most 6. In 1940, Lebesgue [22, p. 36] gave an approximate description of the neighborhoods of vertices of degree
5 in a T5 ∈ T5.

Given a graph H , theweight wM(H) is the maximum overM5 ∈ M5 of the minimum degree-sum of the vertices of H over
subgraphs H ofM5. The weights wP(H) and wT (H) are defined similarly for P5 and T5, respectively.

The boundswM(S1) ≤ 11 (Wernicke [28]) andwM(S2) ≤ 17 (Franklin [15]) are tight. It was proved by Lebesgue [22] that
wM(S3) ≤ 24 and wM(S4) ≤ 31, which were improved much later to the following tight bounds: wM(S3) ≤ 23 (Jendrol’–
Madaras [17]) and wM(S4) ≤ 30 (Borodin–Woodall [9]). Note that wM(S3) ≤ 23 easily implies wM(S2) ≤ 17 and immedi-
ately follows from wM(S4) ≤ 30 (it suffices to delete a vertex of maximum degree from a star of the minimum weight).
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It follows from Lebesgue [22, p. 36] thatwT (C3) ≤ 18. In 1963, Kotzig [21] gave another proof of this fact and conjectured
that wT (C3) ≤ 17; the bound 17 is easily shown to be tight.

In 1989, Kotzig’s conjecture was confirmed by Borodin [1] in a more general form, by proving wM(C3) = 17. Another
consequence of this result is confirming a conjecture of Grünbaum [16] of 1975 that for every 5-connected planar graph the
cyclic connectivity (defined as the minimum number of edges to be deleted to obtain two components each containing a
cycle) is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [26]).

It also follows from Lebesgue [22, p. 36] that wT (C4) ≤ 26 and wT (C5) ≤ 31. In 1998, Borodin and Woodall [9] proved
the following.

Theorem 1 (Borodin–Woodall [9]). For the class of plane triangulationswithminimumdegree5,wT (C4) = 25 andwT (C5) = 30.

The height of a subgraph H of graph G is the maximum degree of vertices of H in G. Now let ϕM(H) (ϕP(H), ϕT (H)) be the
minimum integer kwith the property that every normal planemap (3-polytope, plane triangulation) withminimum degree
5 has a copy of H with all vertices of degree at most k.

It follows from Franklin [15] that ϕM(S2) = 6. From wM(C3) = 17 (Borodin [1]), together with a simple example proving
ϕM(C3) ≥ 7, we have ϕM(C3) = 7. In 1996, Jendrol’ and Madaras [17] proved ϕM(S4) = 10 and ϕT (C4) = ϕT (C5) = 10.
R. Soták (personal communication, see the surveys of Jendrol’ andVoss [19, p.15], [20]) provedϕP(C4) = 11 andϕP(C5) = 10.

In 1999, Jendrol’ et al. [18] obtained the following bounds: 10 ≤ ϕT (C6) ≤ 11, 15 ≤ ϕT (C7) ≤ 17, 15 ≤ ϕT (C8) ≤ 29,
19 ≤ ϕT (C9) ≤ 41, and ϕT (Cp) = ∞ whenever p ≥ 11. Madaras and Soták [24] proved 20 ≤ ϕT (C10) ≤ 415.

For the broader class P5, it was known that 10 ≤ ϕP(C6) ≤ 107 due to Mohar et al. [25] (in fact, this bound is proved
in [25] for all 3-polytopes with δ ≥ 4 in which no 4-vertex is adjacent to a 4-vertex). Recently, Borodin et al. [12] proved
ϕP(C6) = ϕT (C6) = 11.

For C7, besides the above mentioned result 15 ≤ ϕT (C7) ≤ 17, it was known that ϕP(C7) ≤ 359 (Madaras et al. [23]).
Recently, Borodin and Ivanova [8] proved ϕP(C7) = ϕT (C7) = 15, which answers a question raised in Jendrol’ et al. [18].

The purpose of this paper is to prove the following analogue of Theorem 1.

Theorem 2. For the class of 3-polytopes with minimum degree 5, wP(C4) = 26 and wP(C5) = 30.

As an easy corollary, we obtain the above-mentioned unpublished result by R. Soták (for one direction, it suffices to take
a Cl with 4 ≤ l ≤ 5 of smallest weight and subtract l − 1 smallest degrees of its vertices; the other direction follows from
the examples in Section 2).

Corollary 3. For the class of 3-polytopes with minimum degree 5, ϕP(C4) = 11 and ϕP(C5) = 10.

In fact, instead of Theorem 2 we prove the following stronger statement, which extends Theorem 1.

Theorem 4. Every 3-polytope with δ = 5 has
(i) a 4-cycle of weight at most 26,
(ii) a 5-cycle of weight at most 30,
(iii) either a 4-cycle of weight at most 25 or a facial 5-cycle of weight 25, where all bounds 26, 30 and 25 are tight.

In particular, Theorem 4(i+iii) says thatwP(C4) can reach its maximum of 26 only in the presence of a facial 5-cycle with
weight 25, which is a 5-face completely surrounded by 5-vertices (as in Fig. 1). Theorem 4 refines Corollary 3 as follows.

Corollary 5. Every 3-polytope with δ = 5 has
(i) a 4-cycle of height at most 11,
(ii) a 5-cycle of height at most 10,
(iii) either a 4-cycle of height at most 10 or a facial 5-cycle of height 5, where all bounds 11, 10 and 5 are tight.

At the second part of the proof of Theorem 4 we use some ideas from Borodin [1] and Borodin–Woodall [9].
Other related structural results on 3-polytopes, some of which have application to coloring, can be found in the already

mentioned papers and in [2–8,10–14,24].

2. Proving the tightness of Theorem 4

The bounds in Theorem 4 and Corollary 5 are all precise, as the following examples show. Truncate all vertices of the
dodecahedron and cap each 10-face by putting a new vertex inside it and joining it to all the boundary vertices. We have
obtained a triangulation with δ = 5 in which wT (C4) = 25, wT (C5) = 30, and ϕT (C4) = ϕT (C5) = 10.

We now construct a 3-polytope with wP(C4) = 26 (see Fig. 1). First, we replace each face of the icosahedron as shown in
Fig. 1(a). The resulting dual ‘‘blue’’ graph G1 is a cubic graph with only 5- and 6-faces such that the distance between 5-faces
is at least two.

Then, with each 5-face of G1, we perform the operation depicted in Fig. 1(b) to obtain a graph G2 with only 3-faces and
(very few) 5-faces, in which every vertex is of degree 5, 11, or 12. In particular, we truncate all vertices of G1 not incident
with 5-faces. It is easy to check that each 4-cycle of G2 goes through an 11+-vertex, and thatwP(C4) = 26, ϕP(C4) = 11, and
every facial 5-cycle has weight 25 and hence consists of 5-vertices.
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