Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Light C_4 and C_5 in 3-polytopes with minimum degree 5

O.V. Borodin^a, A.O. Ivanova^{b,*}, D.R. Woodall^c

^a Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, 630090, Russia ^b Ammosov North-Eastern Federal University, Yakutsk, 677013, Russia

^c School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, England, United Kingdom

ARTICLE INFO

Article history: Received 10 September 2013 Received in revised form 25 June 2014 Accepted 26 June 2014 Available online 16 July 2014

Keywords: Planar graph Plane map Structure properties 3-polytope Weight

1. Introduction

The degree d(x) of a vertex or face x in a plane graph G is the number of its incident edges. A k-vertex (k-neighbor, k-face) is a vertex (neighbor, face) with degree k, a k^+ -vertex has degree at least k, etc. The minimum vertex degree of G is $\delta(G)$. We will drop the arguments whenever this does not lead to confusion.

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but $d(x) \ge 3$ for every vertex and face *x*. As proved by Steinitz [27], the 3-connected plane graphs are planar representations of the convex 3-dimensional polytopes, called hereafter 3-polytopes.

In this note, we consider the class M_5 of NPMs with $\delta = 5$ and its subclasses P_5 of 3-polytopes and T_5 of plane triangulations, where we define a triangulation to be simple (without loops or multiple edges), so that $T_5 \subset P_5 \subset M_5$. A cycle on k vertices is denoted by C_k , and S_k stands for a k-star centered at a 5-vertex.

In 1904, Wernicke [28] proved that if $M_5 \in \mathbf{M}_5$ then M_5 contains a vertex of degree 5 adjacent to a vertex of degree at most 6. This result was strengthened by Franklin [15] in 1922 to the existence of a vertex of degree 5 with two neighbors of degree at most 6. In 1940, Lebesgue [22, p. 36] gave an approximate description of the neighborhoods of vertices of degree 5 in a $T_5 \in \mathbf{T}_5$.

Given a graph *H*, the weight $w_M(H)$ is the maximum over $M_5 \in \mathbf{M}_5$ of the minimum degree-sum of the vertices of *H* over subgraphs *H* of M_5 . The weights $w_P(H)$ and $w_T(H)$ are defined similarly for \mathbf{P}_5 and \mathbf{T}_5 , respectively.

The bounds $w_M(S_1) \le 11$ (Wernicke [28]) and $w_M(S_2) \le 17$ (Franklin [15]) are tight. It was proved by Lebesgue [22] that $w_M(S_3) \le 24$ and $w_M(S_4) \le 31$, which were improved much later to the following tight bounds: $w_M(S_3) \le 23$ (Jendrol'–Madaras [17]) and $w_M(S_4) \le 30$ (Borodin–Woodall [9]). Note that $w_M(S_3) \le 23$ easily implies $w_M(S_2) \le 17$ and immediately follows from $w_M(S_4) \le 30$ (it suffices to delete a vertex of maximum degree from a star of the minimum weight).

* Corresponding author. E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova), douglas.woodall@nottingham.ac.uk (D.R. Woodall).

http://dx.doi.org/10.1016/j.disc.2014.06.024 0012-365X/© 2014 Elsevier B.V. All rights reserved.

Let $w_P(C_l)$ ($w_T(C_l)$) be the minimum integer k with the property that every 3-polytope (respectively, every plane triangulation) with minimum degree 5 has an *l*-cycle with weight, defined as the degree-sum of all vertices, at most k.

In 1998, O.V. Borodin and D.R. Woodall proved $w_T(C_4) = 25$ and $w_T(C_5) = 30$. We prove that $w_P(C_4) = 26$ and $w_P(C_5) = 30$.

© 2014 Elsevier B.V. All rights reserved.

It follows from Lebesgue [22, p. 36] that $w_T(C_3) \le 18$. In 1963, Kotzig [21] gave another proof of this fact and conjectured that $w_T(C_3) \le 17$; the bound 17 is easily shown to be tight.

In 1989, Kotzig's conjecture was confirmed by Borodin [1] in a more general form, by proving $w_M(C_3) = 17$. Another consequence of this result is confirming a conjecture of Grünbaum [16] of 1975 that for every 5-connected planar graph the cyclic connectivity (defined as the minimum number of edges to be deleted to obtain two components each containing a cycle) is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [26]).

It also follows from Lebesgue [22, p. 36] that $w_T(C_4) \le 26$ and $w_T(C_5) \le 31$. In 1998, Borodin and Woodall [9] proved the following.

Theorem 1 (Borodin–Woodall [9]). For the class of plane triangulations with minimum degree 5, $w_T(C_4) = 25$ and $w_T(C_5) = 30$.

The *height* of a subgraph *H* of graph *G* is the maximum degree of vertices of *H* in *G*. Now let $\varphi_M(H)(\varphi_P(H), \varphi_T(H))$ be the minimum integer *k* with the property that every normal plane map (3-polytope, plane triangulation) with minimum degree 5 has a copy of *H* with all vertices of degree at most *k*.

It follows from Franklin [15] that $\varphi_M(S_2) = 6$. From $w_M(C_3) = 17$ (Borodin [1]), together with a simple example proving $\varphi_M(C_3) \ge 7$, we have $\varphi_M(C_3) = 7$. In 1996, Jendrol' and Madaras [17] proved $\varphi_M(S_4) = 10$ and $\varphi_T(C_4) = \varphi_T(C_5) = 10$. R. Soták (personal communication, see the surveys of Jendrol' and Voss [19, p.15], [20]) proved $\varphi_P(C_4) = 11$ and $\varphi_P(C_5) = 10$.

In 1999, Jendrol' et al. [18] obtained the following bounds: $10 \le \varphi_T(C_6) \le 11$, $15 \le \varphi_T(C_7) \le 17$, $15 \le \varphi_T(C_8) \le 29$, $19 \le \varphi_T(C_9) \le 41$, and $\varphi_T(C_p) = \infty$ whenever $p \ge 11$. Madaras and Soták [24] proved $20 \le \varphi_T(C_{10}) \le 415$.

For the broader class **P**₅, it was known that $10 \le \varphi_P(C_6) \le 107$ due to Mohar et al. [25] (in fact, this bound is proved in [25] for all 3-polytopes with $\delta \ge 4$ in which no 4-vertex is adjacent to a 4-vertex). Recently, Borodin et al. [12] proved $\varphi_P(C_6) = \varphi_T(C_6) = 11$.

For C_7 , besides the above mentioned result $15 \le \varphi_T(C_7) \le 17$, it was known that $\varphi_P(C_7) \le 359$ (Madaras et al. [23]). Recently, Borodin and Ivanova [8] proved $\varphi_P(C_7) = \varphi_T(C_7) = 15$, which answers a question raised in Jendrol' et al. [18].

The purpose of this paper is to prove the following analogue of Theorem 1.

Theorem 2. For the class of 3-polytopes with minimum degree 5, $w_P(C_4) = 26$ and $w_P(C_5) = 30$.

As an easy corollary, we obtain the above-mentioned unpublished result by R. Soták (for one direction, it suffices to take a C_l with $4 \le l \le 5$ of smallest weight and subtract l - 1 smallest degrees of its vertices; the other direction follows from the examples in Section 2).

Corollary 3. For the class of 3-polytopes with minimum degree 5, $\varphi_P(C_4) = 11$ and $\varphi_P(C_5) = 10$.

In fact, instead of Theorem 2 we prove the following stronger statement, which extends Theorem 1.

Theorem 4. Every 3-polytope with $\delta = 5$ has

- (i) a 4-cycle of weight at most 26,
- (ii) a 5-cycle of weight at most 30,
- (iii) either a 4-cycle of weight at most 25 or a facial 5-cycle of weight 25, where all bounds 26, 30 and 25 are tight.

In particular, Theorem 4(i +iii) says that $w_P(C_4)$ can reach its maximum of 26 only in the presence of a facial 5-cycle with weight 25, which is a 5-face completely surrounded by 5-vertices (as in Fig. 1). Theorem 4 refines Corollary 3 as follows.

Corollary 5. Every 3-polytope with $\delta = 5$ has

- (i) a 4-cycle of height at most 11,
- (ii) a 5-cycle of height at most 10,
- (iii) either a 4-cycle of height at most 10 or a facial 5-cycle of height 5, where all bounds 11, 10 and 5 are tight.

At the second part of the proof of Theorem 4 we use some ideas from Borodin [1] and Borodin–Woodall [9].

Other related structural results on 3-polytopes, some of which have application to coloring, can be found in the already mentioned papers and in [2–8,10–14,24].

2. Proving the tightness of Theorem 4

The bounds in Theorem 4 and Corollary 5 are all precise, as the following examples show. Truncate all vertices of the dodecahedron and cap each 10-face by putting a new vertex inside it and joining it to all the boundary vertices. We have obtained a triangulation with $\delta = 5$ in which $w_T(C_4) = 25$, $w_T(C_5) = 30$, and $\varphi_T(C_4) = \varphi_T(C_5) = 10$.

We now construct a 3-polytope with $w_P(C_4) = 26$ (see Fig. 1). First, we replace each face of the icosahedron as shown in Fig. 1(a). The resulting dual "blue" graph G_1 is a cubic graph with only 5- and 6-faces such that the distance between 5-faces is at least two.

Then, with each 5-face of G_1 , we perform the operation depicted in Fig. 1(b) to obtain a graph G_2 with only 3-faces and (very few) 5-faces, in which every vertex is of degree 5, 11, or 12. In particular, we truncate all vertices of G_1 not incident with 5-faces. It is easy to check that each 4-cycle of G_2 goes through an 11^+ -vertex, and that $w_P(C_4) = 26$, $\varphi_P(C_4) = 11$, and every facial 5-cycle has weight 25 and hence consists of 5-vertices.

Download English Version:

https://daneshyari.com/en/article/4647182

Download Persian Version:

https://daneshyari.com/article/4647182

Daneshyari.com