Light C_{4} and C_{5} in 3-polytopes with minimum degree 5

O.V. Borodin ${ }^{\text {a }}$, A.O. Ivanova ${ }^{\text {b,*, D.R. Woodall }}{ }^{\text {c }}$
${ }^{\text {a }}$ Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk, 630090, Russia
${ }^{\mathrm{b}}$ Ammosov North-Eastern Federal University, Yakutsk, 677013, Russia
${ }^{\text {c }}$ School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, England, United Kingdom

ARTICLE INFO

Article history:

Received 10 September 2013
Received in revised form 25 June 2014
Accepted 26 June 2014
Available online 16 July 2014

Keywords:

Planar graph
Plane map
Structure properties
3-polytope
Weight

Abstract

Let $w_{P}\left(C_{l}\right)\left(w_{T}\left(C_{l}\right)\right)$ be the minimum integer k with the property that every 3-polytope (respectively, every plane triangulation) with minimum degree 5 has an l-cycle with weight, defined as the degree-sum of all vertices, at most k.

In 1998, O.V. Borodin and D.R. Woodall proved $w_{T}\left(C_{4}\right)=25$ and $w_{T}\left(C_{5}\right)=30$. We prove that $w_{P}\left(C_{4}\right)=26$ and $w_{P}\left(C_{5}\right)=30$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The degree $d(x)$ of a vertex or face x in a plane graph G is the number of its incident edges. A k-vertex (k-neighbor, k-face) is a vertex (neighbor, face) with degree k, a k^{+}-vertex has degree at least k, etc. The minimum vertex degree of G is $\delta(G)$. We will drop the arguments whenever this does not lead to confusion.

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but $d(x) \geq 3$ for every vertex and face x. As proved by Steinitz [27], the 3-connected plane graphs are planar representations of the convex 3-dimensional polytopes, called hereafter 3-polytopes.

In this note, we consider the class $\mathbf{M}_{\mathbf{5}}$ of NPMs with $\delta=5$ and its subclasses $\mathbf{P}_{\mathbf{5}}$ of 3-polytopes and $\mathbf{T}_{\mathbf{5}}$ of plane triangulations, where we define a triangulation to be simple (without loops or multiple edges), so that $\mathbf{T}_{\mathbf{5}} \subset \mathbf{P}_{\mathbf{5}} \subset \mathbf{M}_{\mathbf{5}}$. A cycle on k vertices is denoted by C_{k}, and S_{k} stands for a k-star centered at a 5 -vertex.

In 1904, Wernicke [28] proved that if $M_{5} \in \mathbf{M}_{5}$ then M_{5} contains a vertex of degree 5 adjacent to a vertex of degree at most 6. This result was strengthened by Franklin [15] in 1922 to the existence of a vertex of degree 5 with two neighbors of degree at most 6. In 1940, Lebesgue [22, p. 36] gave an approximate description of the neighborhoods of vertices of degree 5 in a $T_{5} \in \mathbf{T}_{\mathbf{5}}$.

Given a graph H, the weight $w_{M}(H)$ is the maximum over $M_{5} \in \mathbf{M}_{\mathbf{5}}$ of the minimum degree-sum of the vertices of H over subgraphs H of M_{5}. The weights $w_{P}(H)$ and $w_{T}(H)$ are defined similarly for \mathbf{P}_{5} and \mathbf{T}_{5}, respectively.

The bounds $w_{M}\left(S_{1}\right) \leq 11$ (Wernicke [28]) and $w_{M}\left(S_{2}\right) \leq 17$ (Franklin [15]) are tight. It was proved by Lebesgue [22] that $w_{M}\left(S_{3}\right) \leq 24$ and $w_{M}\left(S_{4}\right) \leq 31$, which were improved much later to the following tight bounds: $w_{M}\left(S_{3}\right) \leq 23$ (Jendrol'Madaras [17]) and $w_{M}\left(S_{4}\right) \leq 30$ (Borodin-Woodall [9]). Note that $w_{M}\left(S_{3}\right) \leq 23$ easily implies $w_{M}\left(S_{2}\right) \leq 17$ and immediately follows from $w_{M}\left(S_{4}\right) \leq 30$ (it suffices to delete a vertex of maximum degree from a star of the minimum weight).

[^0]It follows from Lebesgue [22, p. 36] that $w_{T}\left(C_{3}\right) \leq 18$. In 1963, Kotzig [21] gave another proof of this fact and conjectured that $w_{T}\left(C_{3}\right) \leq 17$; the bound 17 is easily shown to be tight.

In 1989, Kotzig's conjecture was confirmed by Borodin [1] in a more general form, by proving $w_{M}\left(C_{3}\right)=17$. Another consequence of this result is confirming a conjecture of Grünbaum [16] of 1975 that for every 5-connected planar graph the cyclic connectivity (defined as the minimum number of edges to be deleted to obtain two components each containing a cycle) is at most 11, which is tight (a bound of 13 was earlier obtained by Plummer [26]).

It also follows from Lebesgue [22, p. 36] that $w_{T}\left(C_{4}\right) \leq 26$ and $w_{T}\left(C_{5}\right) \leq 31$. In 1998, Borodin and Woodall [9] proved the following.

Theorem 1 (Borodin-Woodall [9]). For the class of plane triangulations with minimum degree 5, $w_{T}\left(C_{4}\right)=25$ and $w_{T}\left(C_{5}\right)=30$.
The height of a subgraph H of graph G is the maximum degree of vertices of H in G. Now let $\varphi_{M}(H)\left(\varphi_{P}(H), \varphi_{T}(H)\right)$ be the minimum integer k with the property that every normal plane map (3-polytope, plane triangulation) with minimum degree 5 has a copy of H with all vertices of degree at most k.

It follows from Franklin [15] that $\varphi_{M}\left(S_{2}\right)=6$. From $w_{M}\left(C_{3}\right)=17$ (Borodin [1]), together with a simple example proving $\varphi_{M}\left(C_{3}\right) \geq 7$, we have $\varphi_{M}\left(C_{3}\right)=7$. In 1996, Jendrol' and Madaras [17] proved $\varphi_{M}\left(S_{4}\right)=10$ and $\varphi_{T}\left(C_{4}\right)=\varphi_{T}\left(C_{5}\right)=10$. R. Soták (personal communication, see the surveys of Jendrol' and Voss [19, p.15], [20]) proved $\varphi_{P}\left(C_{4}\right)=11$ and $\varphi_{P}\left(C_{5}\right)=10$. In 1999, Jendrol' et al. [18] obtained the following bounds: $10 \leq \varphi_{T}\left(C_{6}\right) \leq 11,15 \leq \varphi_{T}\left(C_{7}\right) \leq 17,15 \leq \varphi_{T}\left(C_{8}\right) \leq 29$, $19 \leq \varphi_{T}\left(C_{9}\right) \leq 41$, and $\varphi_{T}\left(C_{p}\right)=\infty$ whenever $p \geq 11$. Madaras and Soták [24] proved $20 \leq \varphi_{T}\left(C_{10}\right) \leq 415$.

For the broader class \mathbf{P}_{5}, it was known that $10 \leq \varphi_{P}\left(C_{6}\right) \leq 107$ due to Mohar et al. [25] (in fact, this bound is proved in [25] for all 3-polytopes with $\delta \geq 4$ in which no 4 -vertex is adjacent to a 4 -vertex). Recently, Borodin et al. [12] proved $\varphi_{P}\left(C_{6}\right)=\varphi_{T}\left(C_{6}\right)=11$.

For C_{7}, besides the above mentioned result $15 \leq \varphi_{T}\left(C_{7}\right) \leq 17$, it was known that $\varphi_{P}\left(C_{7}\right) \leq 359$ (Madaras et al. [23]). Recently, Borodin and Ivanova [8] proved $\varphi_{P}\left(C_{7}\right)=\varphi_{T}\left(C_{7}\right)=15$, which answers a question raised in Jendrol' et al. [18].

The purpose of this paper is to prove the following analogue of Theorem 1.
Theorem 2. For the class of 3-polytopes with minimum degree $5, w_{P}\left(C_{4}\right)=26$ and $w_{P}\left(C_{5}\right)=30$.
As an easy corollary, we obtain the above-mentioned unpublished result by R. Soták (for one direction, it suffices to take a C_{l} with $4 \leq l \leq 5$ of smallest weight and subtract $l-1$ smallest degrees of its vertices; the other direction follows from the examples in Section 2).

Corollary 3. For the class of 3-polytopes with minimum degree 5, $\varphi_{P}\left(C_{4}\right)=11$ and $\varphi_{P}\left(C_{5}\right)=10$.
In fact, instead of Theorem 2 we prove the following stronger statement, which extends Theorem 1.
Theorem 4. Every 3-polytope with $\delta=5$ has
(i) a 4-cycle of weight at most 26,
(ii) a 5-cycle of weight at most 30,
(iii) either a 4-cycle of weight at most 25 or a facial 5-cycle of weight 25 , where all bounds 26,30 and 25 are tight.

In particular, Theorem $4(\mathrm{i}+\mathrm{iii})$ says that $w_{P}\left(C_{4}\right)$ can reach its maximum of 26 only in the presence of a facial 5-cycle with weight 25 , which is a 5 -face completely surrounded by 5 -vertices (as in Fig. 1). Theorem 4 refines Corollary 3 as follows.

Corollary 5. Every 3 -polytope with $\delta=5$ has
(i) a 4-cycle of height at most 11,
(ii) a 5-cycle of height at most 10 ,
(iii) either a 4-cycle of height at most 10 or a facial 5-cycle of height 5, where all bounds 11,10 and 5 are tight.

At the second part of the proof of Theorem 4 we use some ideas from Borodin [1] and Borodin-Woodall [9].
Other related structural results on 3-polytopes, some of which have application to coloring, can be found in the already mentioned papers and in [2-8,10-14,24].

2. Proving the tightness of Theorem 4

The bounds in Theorem 4 and Corollary 5 are all precise, as the following examples show. Truncate all vertices of the dodecahedron and cap each 10 -face by putting a new vertex inside it and joining it to all the boundary vertices. We have obtained a triangulation with $\delta=5$ in which $w_{T}\left(C_{4}\right)=25, w_{T}\left(C_{5}\right)=30$, and $\varphi_{T}\left(C_{4}\right)=\varphi_{T}\left(C_{5}\right)=10$.

We now construct a 3-polytope with $w_{P}\left(C_{4}\right)=26$ (see Fig. 1). First, we replace each face of the icosahedron as shown in Fig. 1(a). The resulting dual "blue" graph G_{1} is a cubic graph with only 5 - and 6 -faces such that the distance between 5 -faces is at least two.

Then, with each 5 -face of G_{1}, we perform the operation depicted in Fig. 1(b) to obtain a graph G_{2} with only 3-faces and (very few) 5 -faces, in which every vertex is of degree 5,11 , or 12 . In particular, we truncate all vertices of G_{1} not incident with 5-faces. It is easy to check that each 4 -cycle of G_{2} goes through an 11^{+}-vertex, and that $w_{P}\left(C_{4}\right)=26, \varphi_{P}\left(C_{4}\right)=11$, and every facial 5 -cycle has weight 25 and hence consists of 5-vertices.

https://daneshyari.com/en/article/4647182

Download Persian Version:
https://daneshyari.com/article/4647182

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: brdnoleg@math.nsc.ru (O.V. Borodin), shmgnanna@mail.ru (A.O. Ivanova), douglas.woodall@nottingham.ac.uk (D.R. Woodall).

